

ЦИФРОВОЕ КАРТИРОВАНИЕ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ПОЛЕЙ

на основе алгоритмов компьютерного зрения и ИИ

ОСНОВНОВНЫЕ ЭТАПЫ ЦИФРОВОГО КАРТИРОВАНИЯ

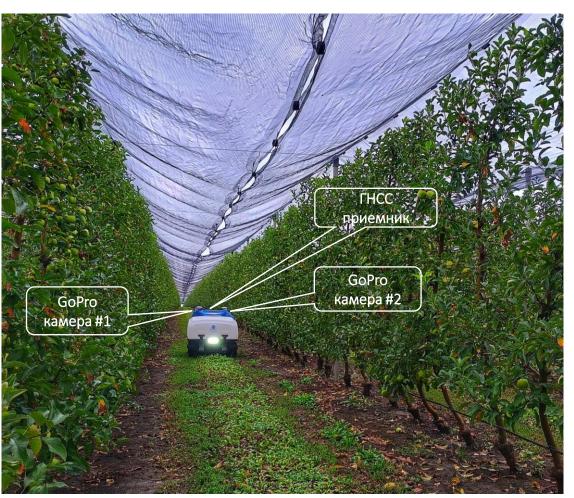
Картирование сельскохозяйственных полей, теплиц, виноградников и фруктовых садов на основе данных собранных видеокамерой, которая комплексирована с навигационным ГНСС приемником:

1) Сбор данных

На дроне или наземном ТС расположены видеокамеры и навигационный приемник. Осуществляется сбор видеоинформации, которая содержит геотеги (каждый кадр содержит информацию о точной геодезической позиции, где он был снят).

2) Обработка данных

Полученные данные обрабатываются с использованием алгоритмов компьютерного зрения и искусственного интеллекта (нейронных сетей) для выделения плодов на кадре, шпалерных опор или признаков болезни растения (по дефектам плода или листьев)


3) Картирование

На основе обработанных данных можно: построить карту плотности урожая, карту урожайности, карту проблемных зон с больными растениями, карту инвентаризации поля, если на нем произрастает несколько сортов растений, прогнозировать урожайность на ранних стадиях роста растения, осуществлять мониторинг шпалерной опорной конструкции сада или виноградника

ПРИМЕРЫ СИСТЕМЫ СБОРА ИНФОРМАЦИИ

GoPro камеры используются для сбора визуальной информации. ГНСС приемник используется как источник геодезической позиции и ориентации ТС.

ОБРАБОТКА ВИДЕОИНФОРМАЦИИ С ПОМОЩЬЮ НЕЙРОСЕТЕЙ ПРИМЕРЫ ОБНАРУЖЕНИЯ И СЕГМЕНТАЦИИ ПЛОДОВ В КАДРЕ

ПРИМЕР РАБОТЫ НЕЙРОСЕТИ ДЕТЕКЦИИ, СЕГМЕНТАЦИИ И КЛАССИФИКАЦИИ ПЛОДОВ В КАДРЕ

Сортировка винограда на здоровый и дефектный

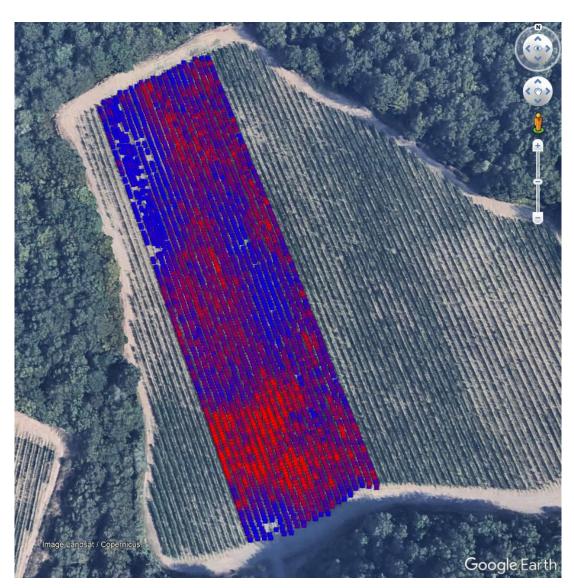
Определение сорта яблок

ОБНАРУЖЕНИЕ БОЛЬНОГО ИЛИ ДЕФЕКТНОГО ВИНОГРАДНОГО КУСТА ПО ЛИСТЬЯМ (АНАЛИЗ НЕЙРОСЕТИ)

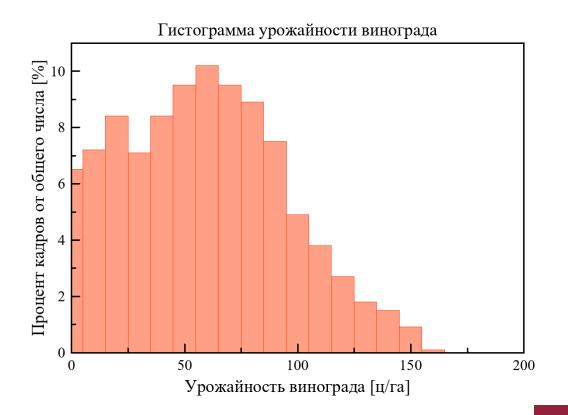

Примеры работы нейросети для выявления больных кустов винограда и определения их геолокации.

Проблемные зоны в кадре помечены желтыми квадратами.

ЛОКАЛИЗАЦИЯ ШПАЛЕРНЫХ ОПОР И ОЦЕНКА ИХ ОТКЛОНЕНИЯ ОТ ВЕРТИКАЛИ



Отклонение шпалерной опоры от вертикали может привести к негативным последствиям. Важно регулярно проверять состояние и вертикальность шпалерных столбов и при необходимости проводить их ремонт или замену. Предложен способ обнаружение сильно наклоненных опор с помощью системы компьютерного зрения.


ПРИМЕР СОЗДАНИЯ КАРТЫ УРОЖАЙНОСТИ (ВИНОГРАД)

Красный цвет – высокая урожайность винограда, синий – низкая урожайность.

Общее число измерений:3669 позицийСредняя урожайность винограда:64.2 ц/гаСредняя доля дефектного винограда:0.4 ц/гаПроцент дефектной продукции:0.61 %Максимальная урожайность винограда:202 ц/гаОбщая площадь полигона:0.97 гаПериметр полигона:485.6 м

ПРИМЕРЫ СОЗДАНИЯ КАРТЫ УРОЖАЙНОСТИ

Карты урожайности создаются на основе карт плотности урожая, которые получены с помощью компьютерного зрения и нейронных сетей, и с использованием информации об общем объеме собранного винограда для заданного поля

ПРИМЕР КАРТЫ ПРОБЛЕМНЫХ ЗОН (ВИНОГРАД)

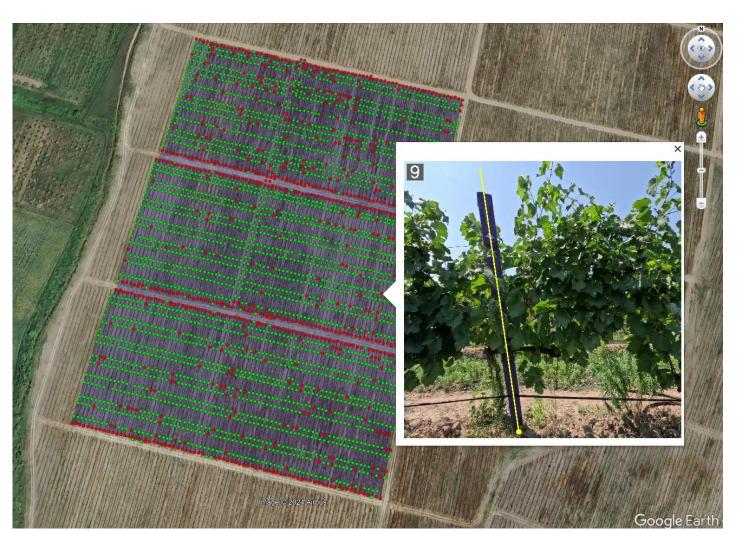
Карта очагов больного или дефектного винограда для трех кварталов виноградника (построена на основе анализа листьев винограда на кадрах изображения с помощью нейросети).

Легенда карты:

Красный цвет — высокая степень зараженности, синий — низкая степень зараженности, незакрашенные участки — нет пораженных болезнью кустов, либо зараженность незначительная.

Общее число проанализированных позиций: 8779 Средняя интенсивность больного винограда: 0.83 %

Для проблемных зон доступно фото-подтверждение.


Максимальная интенсивность больного винограда: 52.76 %

Общая площадь полигона: 6.95 га Периметр полигона: 1079.9 м

Степень зараженности	Процент позиций от общего числа
отсутствует	98.5
4-8	1.1
8-12	0.3
12-16	0.1
16-20	0.0
20-24	0.0

СОЗДАНИЕ КАРТЫ РАСПОЛОЖЕНИЯ ШПАЛЕРНЫХ СТОЛБОВ С ИНФОРМАЦИЕЙ ИХ НАКЛОНА

Карта расположения шпалерных столбов (три квартала виноградника)

Легенда карты:

зеленый цвет — вертикальное отклонение столба не более 5 градусов,

красный цвет — вертикальное отклонение столба более 5 градусов.

Каждый маркер столба содержит информацию о его вертикальном отклонении, для столбов с отклонением более 5 градусов — кадр с изображением столба.

Общее число шпалерных столбов: 3449

Среднее отклонение шпалерного столба: 5.7 градуса

Максимальное отклонение: 51.0 градуса

Общая площадь полигона: 6.93 га

Периметр полигона: 1075.7 м

ПРИМЕР ОБЛАЧНОГО СЕРВИСА ДЛЯ КАРТИРОВАНИЯ

Реализация облачного интерфейса клиент/сервер (frontend) и алгоритмов обработки данных (backend)

возможности системы картирования

Построение карт шпалерных опор, плотности урожая и урожайности

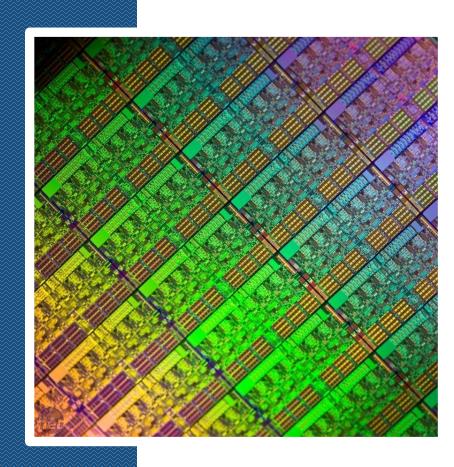
Прогноз объема урожая для планирования задач логистики и производства

Оценка качества сельскохозяйственных плодов: определение процента дефектной продукции

Выявление и локализация болезни растений на ранней стадии для предотвращения ее распространения

Гибкость в кастомизации системы для разного класса сельскохозяйственной продукции: фрукты, овощи и ягоды

Формирование отчетов, таблиц и графиков в удобном для заказчика виде



АО «НИИМА «ПРОГРЕСС»

125183, г. Москва, пр-д Черепановых, д.54 +7 (499) 281-7057

niima@i-progress.tech
https://www.i-progress.tech/

