

ProGeoOffice

User Manual *Version 16.01.2025*

2025

TABLE OF CONTENTS

PREFACE	6
CHAPTER 1. SYSTEM ADMINISTRATOR'S GUIDE	8
1.1 Installation	9
1.2 Installation steps	9
1.3 Progress company license manager	11
1.4 Uninstallation	12
1.5 Updating	13
1.6 Settings	13
CHAPTER 2. MAIN WINDOW	14
2.1 MAIN MENU	15
Project	15
Мар	16
View	18
Tools	20
Program	21
Help	26
2.2 Toolbar	
2.3 Status bar	28
2.4 Project pane	29
CHAPTER 3. MAP	30
CHAPTER 4. SOURCE	34
4.1 Files	39
4.2 Receivers	40
4.3 Datasets	40
Properties	41
Receiver and Antenna	41
4.4 Recordsets	44
4.5 Sites	48
Properties	49
CHAPTER 5. POST PROCESSING	52
5.1 Settings	56
5.2 Static	57
Engine tab	57
Troposphere tab	57
Satellites tab	58
5.3 Batch processing	59
5.4 Single vector processing	60
Solution	62
Properties	63
5.5 Kinematic solution	67

Kinematic solution	67
Residuals	67
Report	68
CHAPTER 6. ADJUSTMENT	70
6.1 Net	71
6.2 Adjustment settings	74
Blunder rejection	75
Blunder detection	75
Confidence level	75
Constraints	75
Loops	76
Interactive	76
6.3 Kinematic solution adjustment	77
CHAPTER 7. PROJECT SETTINGS	80
CHAPTER 8. COORDINATE SYSTEMS MANAGER	82
8.1 GeoMetric database	83
8.2 New coordinate system	87
8.3 New datum	88
8.4 Select existing datum	91
8.5 Coordinate system options	92
Properties	93
Edit	93
Rename	96
8.6 Coordinate systems backup	97
CHAPTER 9. REFERENCE POINTS	98
9.1 Left panel	99
9.2 Right panel	100
9.3 Project	102
CHAPTER 10. LOCALIZATION	103
10.1 Icon bar	106
10.2 Main window	108
Data table	108
10.3 Working with input fields in a table	110
10.4 Localization window tabs	111
10.5 Settings panel	112
10.6 Network coordinate system	112
10.7 Transformation type	113
10.8 Auto select central meridian	114
10.9 Progress window	115
10.10 Import/export of point coordinates	115
10.11 Save localization	116
CHAPTER 11. ANTENNA EDITOR	
CHAPTER 12. AERIAL CAMERA EDITOR	123

12.1 Receiver installation parameters	125
12.2 Camers parameters	126
CHAPTER 13. COORDINATE CALCULATOR	128

PREFACE

Thank you for purchasing this product. The materials available in this Manual (the "Manual") have been prepared by NIIMA PROGRESS ("NIIMA PROGRESS") for owners of NIIMA PROGRESS products. It is designed to assist owners with the use of PGO Software and its use is subject to these terms and conditions (the "Terms and Conditions"). Please read these Terms and Conditions carefully.

TERMS AND CONDITIONS

COPYRIGHT – All information contained in this Manual is the intellectual property of, and copyrighted material of NIIMA PROGRESS. All rights are reserved. You may not use, access, copy, store, display, create derivative works of, sell, modify, publish, distribute, or allow any third party access to, any graphics, content, information or data in this Manual without NIIMA PROGRESS' express written consent and may only use such information for the operation of your software. The information and data in this Manual are a valuable asset of NIIMA PROGRESS and are developed by the expenditure of considerable work, time and money, and are the result of original selection, coordination and arrangement by NIIMA PROGRESS. TRADEMARKS – PGO[™], NIIMA PROGRESS® are trademarks or registered trademarks of NIIMA PROGRESS. Windows® is a registered trademark of Microsoft Corporation; Bluetooth® word mark is owned by the Bluetooth SIG, Inc. Product and company names mentioned herein may be trademarks of their respective owners.

DISCLAIMER OF WARRANTY – EXCEPT FOR ANY WARRANTIES IN THIS MANUAL OR A WARRANTY CARD ACCOMPANYING THE PRODUCT, THIS MANUAL IS PROVIDED "AS-IS." THERE ARE NO OTHER WARRANTIES. NIIMA PROGRESS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE OR PURPOSE. NIIMA PROGRESS AND ITS DISTRIBUTORS SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS CONTAINED HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL. SUCH DISCLAIMED DAMAGES INCLUDE BUT ARE NOT LIMITED TO LOSS OF TIME, LOSS OR DESTRUCTION OF DATA, LOSS OF PROFIT, SAVINGS OR REVENUE, OR LOSS OF THE PRODUCT'S USE. IN ADDITION, NIIMA PROGRESS IS NOT RESPONSIBLE OR LIABLE FOR DAMAGES OR COSTS INCURRED IN CONNECTION WITH OBTAINING SUBSTITUTE PRODUCTS OR SOFTWARE, CLAIMS BY OTHERS, INCONVENIENCE, OR ANY OTHER COSTS. IN ANY EVENT, NIIMA PROGRESS SHALL HAVE NO LIABILITY FOR DAMAGES OR OTHERWISE TO YOU OR ANY OTHER PERSON OR ENTITY IN EXCESS OF THE PURCHASE PRICE FOR PGO.

LICENSE AGREEMENT – Use of any computer programs or software supplied by NIIMA PROGRESS or downloaded from a NIIMA PROGRESS website (the "Software") in connection with the NIIMA PROGRESS receivers constitutes acceptance of these Terms and Conditions in this Manual and an agreement to abide by these Terms and Conditions. The user is granted a personal, non-exclusive, non-transferable license to use such Software under the terms stated here in and in any case only with a single computer. You may not assign or transfer the Software or this license without the express written consent of NIIMA PROGRESS. This license is effective until terminated. You may terminate the license at any time by destroying the Software and Manual. NIIMA PROGRESS may terminate the license if you fail to comply with any of the Terms or Conditions.

You agree to destroy the Software and manual upon termination of your use of software. All ownership, copyright and other intellectual property rights in and to the Software belong to NIIMA PROGRESS. If these license terms are not acceptable, return any unused software and manual.

CONFIDENTIALITY – This Manual, its contents and the Software (collectively, the "Confidential Information") are the confidential and proprietary information of NIIMA PROGRESS. You agree to treat NIIMA PROGRESS' Confidential Information with a degree of care no less stringent that the degree of care you would use in safeguarding your own most valuable trade secrets. Nothing in this paragraph shall restrict you from disclosing Confidential Information to your employees as may be necessary or appropriate to operate PGO Software. Such employees must also keep the ConfidentialInformation confidential. In the event you become legally compelled to disclose any of the Confidential Information, you shall give NIIMA PROGRESS immediate notice so that it may seek a protective order or other appropriate remedy.

WEBSITE; OTHER STATEMENTS – No statement contained at the NIIMA PROGRESS website (or any other website) or in any other advertisements or NIIMA PROGRESS literature or made by an employee or independent contractor of NIIMA PROGRESS modifies these Terms and Conditions (including the Software license, warranty and limitation of liability). MISCELLANEOUS – The above Terms and Conditions may be amended, modified, superseded, or canceled, at any time by NIIMA PROGRESS. The above Terms and Conditions will be governed by, and construed in accordance with, the laws of Russian Federation, without reference to conflict of laws.

REGULATOY INFORMATION – The following sections provide information on this product's compliance with government regulations.

SCREEN CAPTURES – This manual includes sample screen captures. Your actual screen can look slightly different from the sample screen due to the receiver you have connected, operating system used and settings you have specified. This is normal and not a cause for concern

TECHNICAL ASSISTANCE – If you have a problem and cannot find the information you need in the product documentation, contact your local dealer. Alternatively, request technical support using the NIIMA PROGRESS World Wide Web site at: https://progeo.expert/en/

CHAPTER 1. SYSTEM ADMINISTRATOR'S GUIDE

This document contains instructions for installing ProGeoOffice software.

The document describes the system administrator's operations for installing new products and servicing already installed products (correcting, changing, deleting). The document is also suitable for use by untrained users.

SYSTEM REQUIREMENTS:

- 1. Processor: Intel or AMD dual or multi-core
- 2. RAM: not less than 8 GB
- 3. Operating system: 64-bit Microsoft Windows 7 11 versions
- 4. ROM: not less than 500 MB

TECHNICAL SUPPORT CONTACTS AND WEBSITE:

E-mail: <u>support@progeo.online</u> The site of the company:<u>https://progeo.online</u>

1.1 Installation

To install ProGeoOffice execute the ProGeoOffice_X.XX.XXX_Installer.exe installation file. The name of the installation file contains the program version. The program version consists of three integer values. The first indicates the main version of the program. The second indicates the version of the project with which the program works. The third indicates the build number. Newer versions contain higher values. New versions support opening and updating older version projects. When the installation file is executed, the previously installed version of the program is uninstalled automatically. Installation does not require administrator rights and is performed in "%LocalAppData%\Progress\ProGeoOffice\"(C:\Users\username\AppData\Local\Progress\ProGeoOffice\).

1.2 Installation steps

A welcome window with information about the product and installation tips will appear after launching:

Figure 1 – Product information window

After clicking the "Next >" button the program will uninstall previous version of application, if any, and install a new one.

ProGeoOffice Setup	_		\times
Installing Please wait while ProGeoOffice is being installed.			۲
Extract: C:\Users\av.boikov\AppData\Local\Progress\ProGeoOffice\	Reports\Ge	oData \ga	ao 20 1
Show details			
Nullsoft Install System v3.09 Kelfacture.com Back	lext >	Car	ncel

Figure 2 – Uninstall previous version of application window

Once the installation is complete, a corresponding window will be displayed with the option to launch the newly installed software.

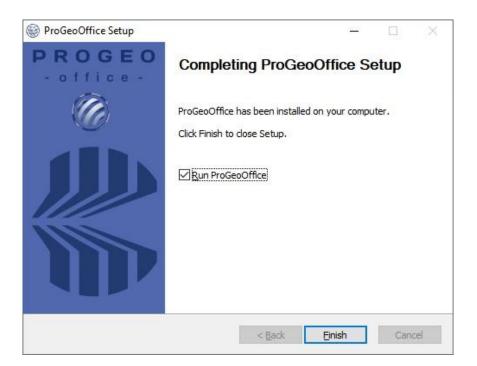


Figure 3 – Corresponding window will be displayed

After clicking the "Done" button, the presence of a license will be automatically checked, and if it is not present, the license manager will be opened.

Online				\sim
8	Activate a new license			
<u>®</u>	Activate an unlinked license	•		
lon-perso	nalized license (1131363083)			
ProGeoC				
	Activating a new license -		×	
	Кеу			
	OK Cancel			

Figure 4 – License manager window

1.3 Progress company license manager

The license manager is installed and supplied with the software and serves to activate, deactivate, transfer and update software licenses. An Internet connection is required for activation. Offline activation is possible via another computer with Internet access.

To activate a new license, you need to click the "Activate new license" button, then in the window that opens, in the "Key" field, enter the 34-character key value in the format XXXXX-XXXXX-XXXXX-XXXXX.

After clicking "OK", a request will be made with information about the PC on which the software is installed to the activation server and if the key matches the license, then the PC data will be linked to this license. After which the license will be installed and will appear in the list below:

Non-personalized	license (390545	0077)	•
ProGeoOffice			
9 1 <u>2</u> 9	Reports	31.12.2024 23:59:59	
<u>9</u> <u>2</u> <u>8</u>	StaticProcess	31.12.2024 23:59:59	

Figure 5 – License activation window

The license will be displayed with the buyer's information, if this information is not specified, "Unnamed license" is displayed. The unique license identifier is indicated in brackets next.

icon indicates that the software can be run on virtual machines under this license. If the icon is crossed out, this option is prohibited.

icon indicates that the software can be used via Remote Desktop Protocol (RDP) under this license. If the icon is crossed out, this option is prohibited.

icon indicates that the license is not active, or activation has not been completed, or the license has expired. If the icon is not crossed out, the license is active.

For each software component, a separate entry indicating the current permissions, component name, and license term or number of launches.

Clicking the button will provide the "Update" menu, allowing you to update the set of components or permissions.

1.4 Uninstallation

To uninstall the software execute the Uninstall.exe program. It is located in the folder with the installed program. It is possible to execute it using the shortcut in the menu "Start" -> "All Applications" -> "Progress" -> "Uninstall ProGeoOffice".

Figure 6 – Window with the installed program

Also through the "Installed applications" menu:

Apps > Installed app		- 00 m
ProGeoOffice	×	= 88 ⊞
= Filter by: All drives → ↑↓ So	ort by: Name (A to Z) V	
app found		
ProGeoOffice		

Figure 7 – Menu Installed applications

1.5 Updating

To update the software, you need to download the new version of the program from the company's website specified in the introduction. Then install it in accordance with the section "Installing ProGeoOffice".

1.6 Settings

User settings store items: coordinate systems, reference points, lists of open projects, etc. When reinstalling the program, these settings are saved and updated as needed to work with the new version of the program. If you need to delete, save or move to another computer or for another user, you must copy or delete the %USERPROFILE%\Documents\ProGeoOffice folder (C:\Users\username\Documents\ProGeoOffice) and all its contents.

CHAPTER 2. MAIN WINDOW

When ProGeoOffice is starting the *Main* program window appears. This window contains *Main menu*, *Tool* and *Status bar*, a project and map panes as well:

Figure 8 – Main window

Below are the terms used in this manual:

Project	SQLite database
Epoch	a set of data sufficient to calculate coordinates at a single point in time
Position	map point object corresponding to the Epoch
Dataset	project table that contains data for unique receiver and antenna pair
Point	a point object based on (1) a navigation solution when importing a GNSS static data file, (2) coordinates calculated by a satellite receiver, (3) RINEX header coordinates, (4) a tag in an RTCM message
Recordset	a query from dataset. Static and kinematic recordsets
Vector	an object corresponding to the common part of two overlapping recordsets. A pair of static recordsets form a linear object. Otherwise, a collection of point objects - Positions
Solution	a result of Vector post-processing
Edge	network element, result of static solution adjustment
Site	an object created by import raw data file according to standalone, DGPS, RTK solutions, header of RINEX, tag in RTCM message

2.1 MAIN MENU

Main menu contains the following items:

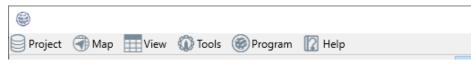


Figure 9 – Main menu

Project

The *Project* menu contains the following items:

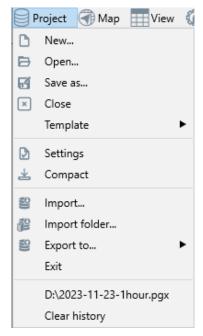


Figure 10 – Project menu item

New	create a new project
Open	open an existing project
Save as	save the project with a new name
Close	save and close the project
Template	select a project settings template
Settings	parameters and settings of the current project
Compact	remove empty database entries
Import	import data files
Import folder	import a folder containing data files
Import to	export project data to one of the exchange formats
Exit	exit program
History list of five	recently opened projects

Note: some project menu items are duplicated in the toolbar

Мар

The Map menu contains the following items:

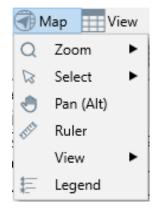


Figure 11 – Map menu item

Zoom contains the following items:

€	ZoomIn	
Q	ZoomOut	
\bigcirc	Show all	Ctrl+Space

Figure 12 – Menu item Zoom

ZoomIn	increases map scale
ZoomOut	decreases map scale
Show all	all objects on program layer will be shown

Select contains the following items:

Figure 13 – Menu item Select

Select	select object
Select By Rect	select all objects in the area limited by the frame
Unselect	cancel previously made selection

Move – panning a map.

Ruler – invokes a tool for distance and azimuth measurement.

View contains the following items:

Back	return to previous map scale
Forward	return to next map scale
Scale	setup map scale

🎯 Scale	×
Pixels per meter: 0,0045	
0,0045	
OK	Cancel

Figure 15 – Map scale

Snap disabled	enable/disable the mode of cursor snapping to point objects
Show graticule	show/hide grid
Background map	show background as a map
Background satellites	show background as a photo
Clear map cache	clear map cache
Legend	list of map signs

View

View contains the following items:

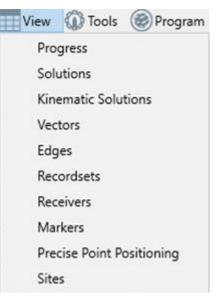


Figure 16 – View menu item

Progress - data processing progress information

Туре	Time	Remaining	Name	Status	Progress	Finished	Speed	Log			
	00:00:32	00:00:01	NGNK_2023_11_23_12_00_00=>SFRN_202	integer processing		7%	7%/s				
÷	00:00:32	00:00:01	RAMN_2023_11_23_12_00_00=>LAVH_202	phase evaluation		94%	94%/s				
\$	00:00:32	00:01:35	RAMN_2023_11_23_12_00_00=>NGNK_20	phase evaluation		11%	5%/s				
÷	00:00:02	00:00:01	SFRN_2023_11_23_12_00_00=>SHEH_2023	rover capturing		0%	0%/s				
X	00:00:00	00:00:01	NGNK_2023_11_23_12_00_00=>NRFM_202	Waiting		0%	0%/s				
	00:00:00	00:00:01	SFRN_2023_11_23_12_00_00=>LAVH_2023	Waiting		0%	0%/s				

Records count: 16 | Time: 00:00:32 | Time left: 00:01:08 | 22% | Finished / Total : 2/18 |

Figure 17 – Progress

Solutions - solutions table

RecNo	Style	Begin point	End point	Begin time	End time	Time span	Processed	Length, m	RMS , m	Fix rati	Num meas	Num used	discarded, %
1	1	ZLNG_2023_11	LAVH_2023_11_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	21964,319	0,0098	94	285209	293270	-3
2	1	RAMN_2023_11	ZLNG_2023_11_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	81078,748	0,0101	98	225578	190138	16
3	1	BALB_2023_11_2	VORN_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	36670,995	0,0102	98	400161	387982	3
4	1	BALB_2023_11_2	SHEH_2023_11_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	51940,048	0,0090	92	508708	478518	6
5	1	SHEH_2023_11	VORN_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	25902,931	0,0108	98	398170	402742	-1
6	1	VORN_2023_11	LAVH_2023_11_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	04.12.202	63372,958	0,0114	98	307921	277072	10
<													

Records count: 31 | Selected: 0 |

Figure 18 – Solutions

Kinematic Solutions - kinematic solutions table

				1	U					
RecNo	Style	Begin point	End point	Begin time	End time	Time span	Epochs	Num	Fix ratio, %	Visible
1		NewBase / Site: NewBase	Track	14.07.2004 10:59:14	14.07.2004 11:15:42	0 / 0:16:28	988	943	95	\checkmark
2		Base / Site: Base	Track	14.07.2004 10:59:14	14.07.2004 11:15:42	0 / 0:16:28	988	943	95	\checkmark
Records	count: 2	2 Selected: 0								

Vectors - vectors table

RecNo	Style	Begin point	End point	Begin time	End time	Time span	Epochs	Length, m	Azimuth	Visible	Solutions
1	1	RAMN_2023_11	NGNK_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	35522,497	19° 58' 00,63464"	\checkmark	1
2	1	RAMN_2023_11	SHEH_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	66956,203	228° 22' 33,67134"		1
3	1	RAMN_2023_11	ZLNG_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	81078,763	306° 37' 43,75853"		1
4	1	RAMN_2023_11	SFRN_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	71458,518	338° 25' 38,23688"		1
5	1	RAMN_2023_11	NRFM_2023_11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	97011,692	258° 38' 31,21259"	\checkmark	1
6	1	RAMN 2023 11	VORN 2023 11	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	3600	73229 749	249° 03' 07 79519"		1

Figure 20 – Vectors

Edges - adjustment results table

RecNo	Style	SubNet	Begin point	End point	dX, m	dY, m	dZ, m	Sigma X (N), m	Sigma Y (E), m	Sigma Z (U), m	Cor. (N), m
1	1	1	RAMN_2023_11_23_12	NGNK_2023_11_23_1	33386,908	12130,056	-100,882	0,000	0,000	0,000	0,000
2	1	1	RAMN_2023_11_23_12	SHEH_2023_11_23_12	-44474,892	-50050,708	-298,981	0,000	0,000	0,000	0,000
3	1	1	RAMN_2023_11_23_12	SFRN_2023_11_23_12	66452,272	-26273,710	-308,965	0,000	0,000	0,000	0,000
4	1	1	RAMN_2023_11_23_12	VORN_2023_11_23_1	-26181,081	-68389,055	-356,205	0,000	0,000	0,000	0,000
5	1	1	RAMN_2023_11_23_12	LAVH_2023_11_23_12	33981,550	-48474,900	-228,132	0,000	0,000	0,000	0,000
<											

Records count: 27 | Selected: 0 |

Figure 21 – Edges

Recordsets - recordsets table

RecNo	Style	Records	Begin time	End time	Time span	Interv	Epochs	Site	Receiver num	Serial n	Antenna typ	e	Antenna	Height type
1	1	RAMN	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	1,0000	3600	RAMN_2023	1707631/9/0/0	725293	LEIAR25	NONE	0,0920	Vertical(ARP)
2	1	BALB_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	1,0000	3600	BALB_2023_1	1707739/10/0/0	10161015	LEIAR25	NONE	0,0910	Vertical(ARP)
3	1	NGNK	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	1,0000	3600	NGNK_2023	1707764/4/0/0	725295	LEIAR25	NONE	0,0920	Vertical(ARP)
4	1	SHEH_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	1,0000	3600	SHEH_2023	1705743/6/0/0	725317	LEIAR25	NONE	0,0939	Vertical(ARP)
5	1	ZLNG_2	23.11.2023 12:00:00	23.11.2023 12:59:59	0 / 1:00:00	1,0000	3600	ZLNG_2023	1700832/3/0/0	200974	LEIAT504GG	NONE	0,0890	Vertical(ARP)
<														

Records count: 10 | Selected: 0 |

Figure 22 – Recordsets

Receivers - information and control. PGO does not creates vectors between data provided by receivers announced as a rovers (rover to rover).

RecNo	Receiver type	Receiver number	Serial number	Firmware version	Rover
1		/0/0/0			
2	LEICA GR30	1707631/9/0/0		4.61.290	
3	LEICA GR30	1707764/4/0/0		4.61.290	
4	LEICA GR30	1705743/6/0/0		4.61.290	
5	LEICA GR30	1707739/10/0/0		4.61.290	
6	LEICA GR10	1700832/3/0/0		4.61.290	

Figure 23 – Receivers

Markers - markers and orientation of the aircraft relative to the trajectory

RecNo	Time	Marker	Markers type	Latitude	Longitude	Height, m	DX (N), m	DY (E), m	DZ (U), m	Azimuth	RMS , m
1	15.02.2019 12:42:		_XA	N 51° 26' 51,29162"	E 7° 16' 10,97936"	267,6125	-3,294	2,061	-0,142	147° 57' 55,18969"	0,0124
2	15.02.2019 12:42:		_XA	N 51° 26' 50,88776"	E 7° 16' 11,36944"	267,3218	-3,810	2,215	-0,030	149° 49' 36,48357"	0,0114
3	15.02.2019 12:42:		_XA	N 51° 26' 50,45443"	E 7° 16' 11,76701"	267,5478	-4,142	2,547	0,135	148° 24' 19,15428"	0,0109
4	15.02.2019 12:42:		_XA	N 51° 26' 50,03992"	E 7° 16' 12,15386"	267,4095	-4,072	2,259	-0,153	150° 58' 52,71321"	0,0106
5	15.02.2019 12:42:		_XA	N 51° 26' 49,59662"	E 7° 16' 12,53231"	267,1409	-4,074	2,042	0,333	153° 23' 00,95705"	0,0101
6	15.02.2019 12:42:		XA	N 51° 26' 49 16394"	F 7° 16' 12 87820"	267 5886	-4 249	2 171	-0.052	152° 56' 16 07913"	0.0101

Records count: 246 | Selected: 0 |

Figure 24 – Markers

Precise point positioning - PPP results table

RecNo	Style	Name	Begin time	End time	Time span	Processed	Latitude	Longitude	Height, m	RMS , m	Fix ratio, %	Num meas	Num used
1	٠	ZLNG	24.01.2024	24.01.2024 23:59:00	0 / 23:59:30	13.02.2024 13:48:55	N 55° 59' 26,	E 37° 12' 53,	245,7314	0,0140	0	109068	101712
2	•	NGNK	24.01.2024	24.01.2024 23:59:00	0 / 23:59:30	13.02.2024 13:48:56	N 55° 51' 36,	E 38° 27' 04,	161,3137	0,0150	0	109530	107442
3	•	VORN	24.01.2024	24.01.2024 23:59:00	0 / 23:59:30	13.02.2024 13:48:55	N 55° 19' 14,	E 37° 10' 48,	226,6671	0,0157	0	110006	109922
4	•	PT02	24.01.2024	24.01.2024 23:59:00	0 / 23:59:30	13.02.2024 13:49:12	N 55° 50' 36,	E 37° 32' 15,	203,6199	0,0131	0	179724	170292
5	•	NRFM	24.01.2024	24.01.2024 23:59:00	0 / 23:59:30	13.02.2024 13:49:21	N 55° 22' 46,	E 36° 45' 24,	201,3616	0,0158	0	109282	109048
<													>
Records	count: 12	2 Selec	ted:0										

Figure 25 – Precise point positioning

Sites - sites table

RecNo	Style	Sites 🏠	Snaped to	Latitude	Longitude	Height, m	Sigma X (N), m	Sigma Y (E), m	Sigma Z (U), m	RMS , m
1		BALB_2023_1	Adjust	N 55° 10' 50,50778"	E 36° 39' 29,04777"	191,7792	0,000	0,000	0,000	0,0055
2	0	DMDV-2023	Navigation	N 55° 26' 31,04373"	E 37° 45' 06,79231"	203,8568	0,293	0,385	0,506	1,0879
3		LAVH_2023	Adjust	N 55° 51' 47,81284"	E 37° 28' 59,57810"	209,4778	0,000	0,000	0,000	0,0043
4	¢	NGNK_2023	Plane and height snapped	N 55° 51' 36,78096"	E 38° 27' 04,05336"	161,3103	0,000	0,000	0,000	0,0003
5	.	NRFM_2023	Adjust	N 55° 22' 46,82804"	E 36° 45' 24,72323"	201,3750	0,000	0,000	0,000	0,0093
6	6	RAMN 2023	Adjust	N 55° 33' 37 80466"	F 38° 15' 26 69327"	163 3169	0.000	0.000	0.000	0.0056

Records count: 10 | Selected: 0 |

Figure 26 – Sites

Tools

Tools contains the following items:

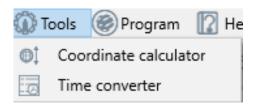


Figure 27 – Tools menu item

Coordinate calculator coordinate calculator is described in chapter Coordinate calculator

Time converter time converter

le Time converter		×
GPS(sec)	1392029825,4	458
GPS(Day/Sec)	15.02.2024	∽ 39425,458 🔹
GPS(Week/Sec)	2301	▲ 385025,458 ▲ ▼
GPS(Day of week)	2301	▲ 4 ▲
GPS(Day of year)	2024	▲ 46 ▲
GPS(Date / time)	15.02.2024	∽ 10:57:05 🛟
UTC(Date / time)	15.02.2024	∽ 10:56:47 🛟
Local(Date / time)	15.02.2024	∽ 13:56:47 🔹

Figure 28 – Time converter window

GPS	Global Positioning System time, is the atomic time scale implemented by the atomic clocks in the GPS ground control stations and the GPS satellites themselves. GPS time was zero at 0h 6-Jan-1980 and since it is not perturbed by leap seconds. GPS is now ahead of UTC by 22 seconds.
UTC	Coordinated Universal Time, popularly known as GMT (Greenwich Mean Time), or Zulu time.
Local	Local time differs from UTC by the number of hours of your time zone.

Program

Program contains the following items:

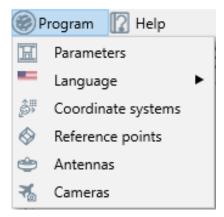


Figure 29 – Program menu item

Common tab

Program parameters ×												
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy				
Open last project												
Use epoch in coordinate trasformation												
Request downloading if geoid not exists												
After ex	oport open	file										
Number of	threads	4	~									
Templates fo	older path											
			OK	Ca	ancel							

Figure 30 – Program parameters. Common tab

Open last project	open last used project when a program is starting
Use epoch in coordinate transformation	apply time depending coordinate transformations
Request for downloading if geoid is exists	asks confirmation about geoid model file downloading from coordinate transformation repository
After export open file	open export settings file
Number of threads	set the number of threads used during export and processing
Templates folder path	path to the folder with saved templates

Import tab

Program parameters												
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy				
 ✓ Calculate coordinates ☐ Don't import nested data ✓ Don't load ephemeris from Internet 												
	OK Cancel											

Figure 31 – Program parameters. Import tab

Calculate coordinates	calculate coordinates for each sampling epoch using the measurement information contained in it. Otherwise, for each epoch, the coordinates written in the file are taken, and if they are absent, they are calculated even if the checkbox is switched off
Don't import nested data	do not import any data attached to the imported file (RTCM, meteo)
Don't load ephemeris from Internet	do not download ephemeris from the Internet automatically

Format tab

Setting the units of measurement used in the program.

Common	Import	Format	Report	Markers	Map	CORS	5 Interface	Proxy		
Time				Coordina	tes					
System G	BPS .		~	Angle type			Degress, Minutes and Seconds $$			
View D	ate/Time	Angle label			N / S and W / E ~					
Format			~	Angle seconds precision			0,11223			
Units			Length precision			0,1122				
Length m	neters		~							
Angle d	egrees		~							
_										
Restor	e default fo	rmat settin	gs							

Figure 32 – Program parameters. Format tab

Report tab

This tab shows the list of the supported report types formats.

Program parameters											
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy			
✓ Open report file after generated Report type Render											
				OK	Cance	el					

Figure 33 – Program parameters. Report tab

Markers tab

Type of epoch coordinates interpolation.

Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy	
Marker		n							
0 -p									

Figure 34 – Program parameters. Markers tab

Map tab

This tab contents the cartographic data source. *Alternative* means that program starts searching for maps at most popular Internet map repositories.

The check box *Show grid* shows grid on a map pane.

🛞 Program	n paramete	ers							×
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy	
Backgrou Mapbo Alterna	х								
☐ Show g ☑ Show c		panel							
				OK	Cance	el			

Figure 35 – Program parameters. Map tab

CORS tab

The check box hides/shows the vectors created using CORS data.

Program parameters												
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy				
☑ Enable CORS to CORS vectors												
	OK Cancel											

Figure 36 – Program parameters. CORS tab

Interface tab

Setting up interface elements.

🎯 Program	Program parameters X						×		
Common	Import	Format	Report	Markers	Мар	CORS	Interface	Proxy	
	tree vector icon checkboxe								
Progree	ss log place ee in separ ommon pr	ting in the o a in view tab ate tab ogress in tro	2						
				OK	Cance	el			

Figure 37 – Program parameters. Interface tab

Proxy tab

Selecting the type of proxy and protocol to use when connecting to the Internet when downloading ephemeris, downloading geoid model files, or updating the antenna database.

🛞 Program	n paramete	ers							\times
Common	Import	Format	Report	Markers	Map	CORS	Interface	Proxy	
Proxy con No pro Autode Manua	etect	/pe	Protocol ty) http) socks ddress	/pe			Port	0	
			ОК		Cancel				

Figure 38 – Program parameters. Proxy tab

The item *Language* is selecting the interface language.

The item is described in the section *Coordinate system manager*. The item is described in the section *Reference points manager*. The item is described in the section *Antennas manager*. The item is described in the section *Aerial camera manager*.

Help

Help contains the following items:

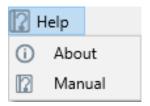


Figure 39 – HELP menu item

About

Program version information.

Figure 40 – About

Manual

Opens the online program manual located on the website.

2.2 Toolbar

The toolbar is located at the top of the main window and contains icons with which the user can access the program's functions. Clicking the left mouse button on the icon will open a menu displaying a list of menu items. Point your pointing device at the desired menu item, press and release the left mouse button, and this function will be called.

C	dialog window New project
₿	dialog window <i>Open project</i>
	dialog window Project setting
+	compact project
80	dialog window Import files
<u>9</u>))	dialog window Export project data
€	Coordinate calculator
Ø	Time converter
<u>,</u>	Coordinate system manager
\bigotimes	Reference points manager
٢	Antennas manager
\odot	increases map scale
Q	decreases map scale
\bigcirc	shows entire program layers
\square	sets cursor in <i>Selection in point</i> mode
	sets cursor in <i>Selection in rectangle</i> mode
	unselect

Chapter 2. Main window

٩	panning the map
ALE -	sets the cursor in ruler mode for distance and azimuth measurement
5	returns the map in previous position and scale
C*	returns the map to initial position and scale after
	sets the snapping mode for the ruler
	show/hide grid
\bigotimes	show/hide raster map
tela,	shows/hides space images
*	show Legend
69 v	vGS84 selects project map coordinate system

2.3 Status bar

Status designed for information about processes progress. It is active during data import/export and post-processing:

3	2		Fin	ished/Total: 0/1 (25%)) Time: elap	osed 00:00:01; left 00:	00:05; total 00:0	0:07
Click Click	() to	stop the activate	Figure e process. Progress table:	41 – Status bar				
0 £	4	~		-				
Туре	Time	Remaining	Name	Status	Progress	Finished	Speed	Log
\$	00:00:10	00:00:01	BALB_2023_11_23_12_00_00=>LAVH_2023	phase evaluation		99%	99%/s	
\$	00:00:10	00:00:01	BALB_2023_11_23_12_00_00=>SHEH_2023	base capturing		84%	16%/s	
\$	00:00:10	00:00:00	BALB_2023_11_23_12_00_00=>DMDV_202	base capturing		74%	37%/s	
\$	00:00:10	00:00:00	BALB_2023_11_23_12_00_00=>NRFM_2023	base capturing		93%	31%/s	
<								>
Records o	ount: 4 Tin	ne: 00:00:10	Time left: 00:00:01 88% Finished / Total	: 0/4				

Figure 42 – Progress table

The table toolbar contains the following icons:

۲	to stop the process
	to clear the window
<u>2</u> 1	switch to log tab for process summary
11:: 11:: 11:: 11::	A A

11:28:08 11:27:49: : Loading file:///C:/Boikov/GFS_RAW_FILES/2023-05-18/T3-03-20230518.jps 11:28:07: : C:\Boikov\GFS_RAW_FILES\2023-05-18\T3-03-20230518.jps finished; 1684 epochs total

Figure 43 – log-file

	lift completed processes up
	remove terminated processes messages
4 ~	number of threads

2.4 Project pane

The *Project* pane is designed to provide full access to program functions. There are five operational tabs: *Source, Process, Adjustment, Map* and *Projects*:

Source tab tree structure depends on *Project* and *Sort* options described below.

8	Project	►	J	Files	Ctrl+Alt+1
¢↓	Sort By	۲	۲	Receivers	Ctrl+Alt+2
<u>zo</u>	Import			Dataset	Ctrl+Alt+3
i i i i i i i i i i i i i i i i i i i	Import folder		1	Recordsets	Ctrl+Alt+4
	Clear project		0	Sites	Ctrl+Alt+5

Figure 45 – Source tab

The Process tab is described in Chapter 5. Post processing.

The Adjustment tab is described in Chapter 6. Adjustment.

The Map panel is described in Chapter 3. Map.

CHAPTER 3. MAP

The *Map* tab provides several predefined layers using for control of the principal objects view. Click the *Map* tab to have access to the layer settings:

🔺 🗹 🗇 Project
🔺 🗹 🛇 Recordset coordinates
Receiver
ProGeoOffice
🔺 🗹 🛇 Vectors
Static
🗹 Kinematic
🔺 🗹 🔿 Solutions
Static
🔺 🗹 Kinematic
Fixed
🗹 Float
🗹 🔿 Sites
🗹 🔿 Reference points
🗹 🔿 Precise Point Positioning
🔺 🗹 🔿 Network
✓ Edges
Adjusted kinematic
Markers
🗹 XA
⊠ XB
⊠ xc
🕨 🖉 🗞 Countries
► 🗹 🗞 CORS
Source 💮 Process
♦ Adjustment ④ Map Projects

Figure 46 – Layers

Below the notification of signs:

•.•	epochs whose coordinates were calculated by the receiver software
•.	epochs whose coordinates were calculated by the PGO when importing the measurement file
_	static vector
°00 0 00	kinematic vector
-	static solution - custom colored line
	fixed kinematic solution (object velocity < 0.1 m/sec)

	inematic solution (object velocity > 0.1 m/sec) nematic solution
float ki	nematic solution
noat ki	
ite on	standalone coordinates
site on	post-processed coordinates
, site on	adjusted coordinates
∳ site sn	apped to reference point
♦ referer	nce point
Precise	e Point Positioning solution
comme	on edge
adjuste	ed kinematic
events	

Layers of administrative boundaries and continuously operated reference station regions boundaries:

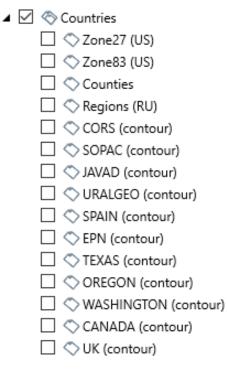


Figure 47 – Contours

Continuously operated reference station layers:

Figure 48 – CORS

Check-box next to the item makes the layer visible or invisible.

Some layers have style settings. Click the right mouse button on the item and select Style:

4	\checkmark	🔿 Network	:
		🗹 Edges 👔	
		🗹 Adjusted	Style

Figure 49 – Layer style

In the *Lines, Label, Track* tabs (depending on the layer) it is possible to set the required image style:

le Style	×
Lines Label	
Width < 2 > Color v	L1 + L2 + L5 Width < 2 Color Arrow
L1 only Width < 2 > Color ~	L2 only Width < 2 > Color / Arrow
L5 only Width < 2 > Color ~	Wide lane Width < 2 > Color
ОК	Cancel Default

Figure 50 – Style settings for line object

Lines	Label			
∨ V Posit Offse Offse Colc E E I	′isible tion et Vert. et Horiz. xxt style− t	Arial	Label values Separator Name Fix ratio Length discarded 0%	
Effe	cts k Color	None ~		

Figure 51 – Label tab

🖗 Style 🛛 🗙
Track
ngine type Default ~
Fixed Visible
Begin color
End color
Size < 7
Float
Visible Begin color
End color
Size < 7
OK Cancel Default

Figure 52 – Track tab

CHAPTER 4. SOURCE

The *Source* tab is active when a program is starting. This tab is a main for data management – import/export, view, modification data imported into the project.

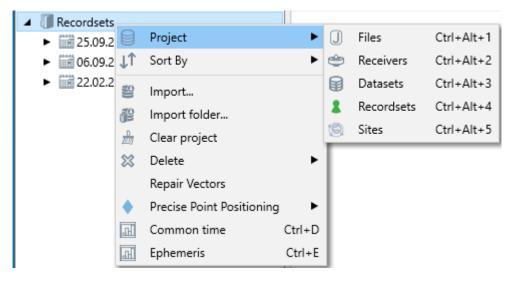


Figure 53 – Project

The root item may vary depending on *Project* option. By clicking on it user may organize main project tree according with *Files*, *Receivers*, *Datasets*, *Recordsets* and *Sites* options. The *Files* option shows items with regard to imported files.

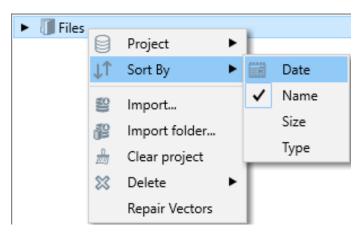


Figure 54 - Files, Sort by

Files, recordsets and datsasets sorted by date has Common time option:

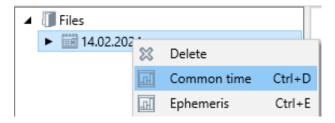


Figure 55 – Common Time

When this option is selected, *Common Time* window displays a graph of the observation time for all recordsets in the project:

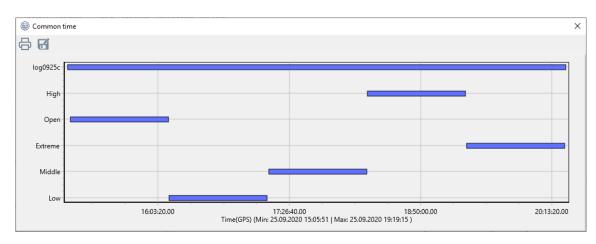


Figure 56 – Common Time diagram

Receiver item shows a list of receivers that provide raw data files:

Figure 57 – Receivers

Receivers are sorted by name and type.

As well as a raw data file may contain GNSS data captured from multiple receivers and antennas (rover file with wrapped bases RTCM corrections, multi-antenna receiver file). We introduce *Dataset* that is a corresponding receiver/antenna pair.

File may be represented in a project by multiple datasets. From the database point of view, *Dataset* is a set of consecutive in time records in the project database table that contains raw GNSS data. *Datasets* are created from files during import GNSS files according to program settings. The file may be represented in the project by multiple datasets.

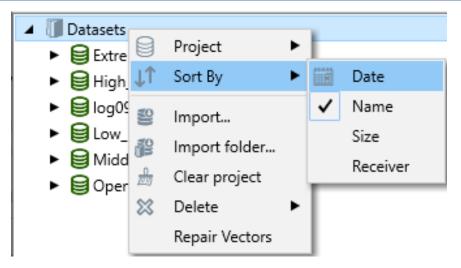


Figure 58 – Datasets, sort by

Recordset is a query from *Dataset*. By default, every dataset produces at least one recordset linked to the parent object. User may modify recordsets with no risk to corrupt original data because of the opportunity to recover it at any time from the parent *Dataset*. In the meantime, the Dataset automatically produces multiple recordsets in a case of *STATIC/DYNAMIC* events marker, epoch gaps, record interval changing inside raw data file and so on.

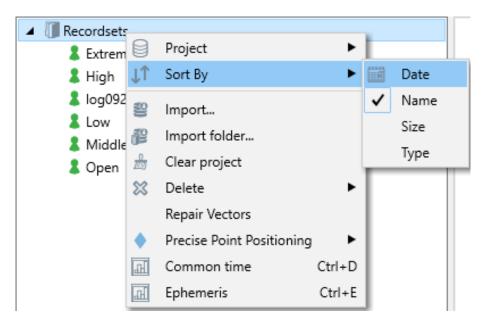
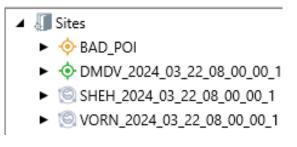



Figure 59 – Recordsets, sort by

Site is an object created by import procedure and being used as point GIS feature:

Coordinates of Site are the standalone solution or provided by the receiver. A *Dataset* and a *Recordset* are associated with a *Site*. *PGO* creates site using the *Tolerance* for site criterion. If the distance between the existing and newly created *Sites* is less than the established Tolerance, then a new *Site* is not created.

All above-mentioned items may be sorted by some parameters depending on the selected item. Sorting options also depends on the selected item.

Import - import different types of GNSS data as follow.

\rightarrow \checkmark \uparrow \rightarrow This PC	> New o	lisk (D:) > NTRIP-MGGT > 2023-11-23-1hou	ır 🗸	ට 🔎 Search	h 2023-11-23-1hour
rganize 🔻 New folder					☷ ▾ Ⅲ
	^	Name	Date modified	Туре	Size
🖈 Quick access		BALB_2023_11_23_12_00_00.rtcm	30.11.2023 16:30	RTCM File	5 073 KB
E Desktop	*	BRDC_2023_11_23_11_00_03.rtcm	30.11.2023 16:30	RTCM File	6 253 KB
🕂 Downloads	*	BRDC_2023_11_23_12_00_03.rtcm	30.11.2023 16:30	RTCM File	6 253 KB
🚆 Documents	*	BRDC_2023_11_23_13_00_03.rtcm	30.11.2023 16:30	RTCM File	6 253 KB
Pictures	*	DMDV_2023_11_23_12_00_00.rtcm	30.11.2023 16:30	RTCM File	4 975 KB
OneDrive		LAVH_2023_11_23_12_00_00.rtcm	30.11.2023 16:31	RTCM File	4 225 KB
OneDrive		NGNK_2023_11_23_12_00_00.rtcm	30.11.2023 16:31	RTCM File	4 829 KB
🛃 Yandex.Disk		NRFM_2023_11_23_12_00_00.rtcm	30.11.2023 16:31	RTCM File	3 150 KB
This DC		RAMN_2023_11_23_12_00_00.rtcm	30.11.2023 16:31	RTCM File	3 805 KB
This PC		SFRN_2023_11_23_12_00_00.rtcm	30.11.2023 16:31	RTCM File	4 838 KB
📜 3D Objects		SHEH_2023_11_23_12_00_00.rtcm	30.11.2023 16:32	RTCM File	4 945 KB
📃 Desktop		VORN_2023_11_23_12_00_00.rtcm	30.11.2023 16:32	RTCM File	3 154 KB
A Documents	×	□ 71 N/C 2022 11 22 12 00 00 ±	20 11 2022 16:22	DTCM FIL-	2 002 KB
File <u>n</u> ame:	1			 RTCM3 files 	(*.rtcm)

Figure 61 – Import observation files

Import folder	option may be used for batch process of import all valid GNSS data
Clear project	option used to remove all GNSS data from a project. Program asks about a confirmation:

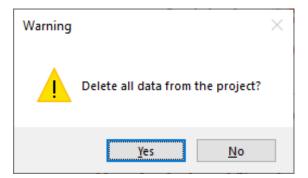


Figure 62 – Delete confirmation

Delete delete selected data from the project:

- Delete epochs delete data that is not used when creating vectors
- Residuals remove residuals that were saved during vector postprocessing

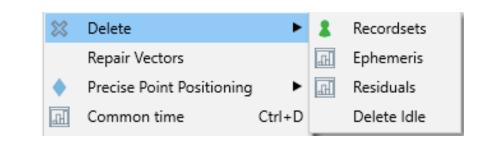


Figure 63 – Delete selected data

Repair Vectors	restores vectors. Option may be helpful in case of program crash							
	by some reasons.							
Precise Point Positioning	calculation of coordination	ates	by PPP:					
	Precise Point Positioning	ŝ	Process	F12				
	Common time Ctrl+D	8	Delete	Del				

Figure 64 – Menu for PPP solutions

Common time	time diagram for all project recordsets
Ephemeris	satellite ephemeris diagram:
	Green - data available
	Yellow - unhealthy satellite
	Blue - no data available

Figure 65 – Satellite ephemeris diagram

4.1 Files

The menu designed for the file objects management looks as follow:

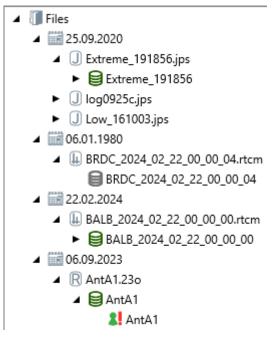


Figure 66 – Files

Letters or simbols above the icons indicates files origin (B, J, R,) - broadcasted ephemeris, jps, RINEX, RTCM). The *File* item contains related *Datasets* and *Recordsets* items. A red exclamation mark before the recordset name is shown if antenna type has not been specified.

4.2 Receivers

The menu designed for the receiver objects management looks as follow:

Receivers
JAVAD TR_LS4_1WUDUG405OJNN371LGYHOEA9DT
 Extreme_191856
Elsow_161003
IAVAD TRIUMPH3_H3A868C1BD42DBBEE4FF
JAVAD TRIUMPH_1M_0S5X908K4D6I90QDSPVJA2QGHS
LEICA GR30_1707739/10/0/0
BALB_2024_02_22_00_00_00

Figure 67 – Receivers

The Receiver item contains related Datasets and Recordsets items.

4.3 Datasets

The menu designed for the dataset objects management looks as follow:

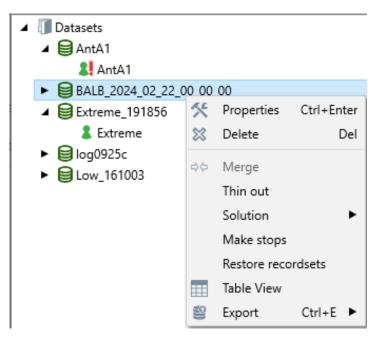


Figure 68 – Datasets

Properties

le AntA1				>
General Rece	iver and Antenna Satellites SkyPlot			
FileName	C:\Boikov\GPS_RAW_FILES\2023-09-07\AntA1.230	Begin time	06.09.2023 ~	15:21:30
Alias	AntA1	End time	07.09.2023 ~	6:55:00
Site	AntA1	Interval	30,000	se
MarkerName	AntA1	Epoch	1868	
MarkerNumber	0	RMS	1,6664	n
Comment		XYZ BL	H Grid	
	Source and model:""	Latitude	N 55° 50' 36,43116"	
		Longitude	E 37° 32' 14,58129"	
Observer		Height	205,1261	m
Agency		EPOCH	0,0000	
		S WGS8	14	~
	OK	Cancel		

Figure 69 – General tab

General tab contains information about the file name and path to the file, the begin and end time and interval of the recording, the number of epochs, standard deviation and standalone coordinates of the site. Here it is possible to change the start and end times of the recordset.

Receiver and Antenna

The Receiver and Antenna tab is used to select the antenna type, view and edit antenna parameters:

🛞 AntA1		×
General Rece	eiver and Antenna Satellites SkyPlot	
Receiver		Antenna
Туре	JAVAD TRIUMPH3	Туре
Board		Unknown V Q
Serial number		Height
ID	H3A868C1BD42DBBEE4FF	Type Vertical(ARP) ~
Firmware versio	n 4.2.01-220630	Value 0,0000 m
Messages		Offsets
		North 0,0000 m
		East 0,0000 m
		Vertical 0,0000 m
		Serial number -Unknown-
	L	
	OK	Cancel

Figure 70 – Receiver and Antenna tab

Click O button for antenna list.

Types of measured antenna height:

- Vertical(ARP) vertical, ARP (Antenna Reference Point)
- Slant(ARP) slant, ARP
- Slant(SHMP) slant, SHMP (Slant Height Measurement Point)

le AntA1											×						
General	Receiver and Antenna	Satellites	SkyPlot														
Satellite	s				Sig	nals					^						
∧ GPS					~ 0	SPS 📕											
12	345678	91011	12 13 14		C1C	C1W	C2X	C2W	C5X	C1X							
1516(789222	23 24 25	26 27 28		L1C	L1W	L2X	L2W	L5X	L1X							
29 30 3	;1 32 33 34 35 36 (37			D1C	D1W	D2X	D2W	D5X	D1X							
∧ GLON	IASS 🦲				S1C	S1W	S2X	S2W	S5X	S1X							
12	345678	900	12 13 14		~ 0	GLONA	ASS 🔳										
15160	089020	23 24 25	26 27 28		C1C	C1P	C2C	C2P	C3X	С							
29 30 6	31 32				L1C	L1P	L2C	L2P	L3X	L							
∧ GALIL	eo 🥌				D1C	D1P	D2C	D2P	D3X	D							
02	345678	900	121314		S1C	S1P	S2C	S2P	S3X	S							
600	713192222	3225	26 27 28		~ 0	GALILE	0										
29 30 8	3 3 3 3 3 3 3 6	789	40 41 42		C1X	C8X	C6X	C7X	C5X	С							
4344	15 46 47 48 49				L1X	L8X	L6X	L7X	L5X	L	~						
		OK	Ca	ancel													

Figure 71 – Satellites tab

Information about GNSS satellites and signals. Yellow colored circles mark unhealthy satellites.

Field ^ GALILEO

indicates ratio of exist/absent signals.

Green, red, blue, yellow colored circles means GPS, GLONASS, Galileo, Beidou satellites respectively. Use scroll control to see picture in dynamic.

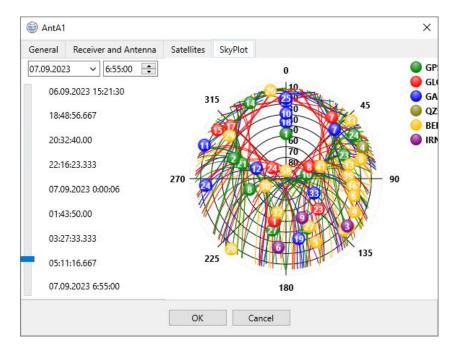


Figure 72 – Sky Plot tab

Delete	deleting from the project. Restoration is impossible, data is deleted
	permanently
Merge	combines two datasets into one. Only possible if the datasets were written by the same receiver
Thin out	bring the recording interval to the value selected from the list

Thinning dataset		×
Interval		
2,000	~	sec
10,00	^	
11,00		
12,00		
13,00		
14,00		
15,00		
30,00		
60,00	~	

Figure 73 – Recording interval

A thinned dataset cannot be restored, the data is deleted permanently.

Solution	is to set the coordinates of the dataset corresponding to the										
	coordinates taken from the receiver or calculated in the PGO										
Make stops	pring the recording interval to the one selected from the list										
Restore recordsets	restore recordset to its original form after deleting or editing										
Table view	data by epoch in tabular form										

RecNo	Enable	Time	Latitude	Longitude	Height, m	Sigma N, m	Sigma E, m	Sigma U, m	Satellites	Satellites	RMS , m	PDOP,	GDOP,	HDOP, m	TDOP, m
1		23.11.2023 12:00	N 55° 10' 50,53260"	E 36° 39' 29,08002"	186,3554	0,1400	0,1038	0,4517	37	37	0,9956	0,8377	0,0000	0,0000	0,0000
2	\checkmark	23.11.2023 12:00	N 55° 10' 50,53217"	E 36° 39' 29,08020"	186,3358	0,1400	0,1038	0,4518	37	37	0,9957	0,8377	0,0000	0,0000	0,0000
3	\checkmark	23.11.2023 12:00	N 55° 10' 50,53238"	E 36° 39' 29,08005"	186,3558	0,1405	0,1042	0,4534	37	37	0,9975	0,8377	0,0000	0,0000	0,0000
4	\checkmark	23.11.2023 12:00	N 55° 10' 50,53246"	E 36° 39' 29,08021"	186,3680	0,1401	0,1039	0,4520	38	37	0,9959	0,8377	0,0000	0,0000	0,0000
5	\checkmark	23.11.2023 12:00	N 55° 10' 50,53276"	E 36° 39' 29,07998"	186,3524	0,1402	0,1040	0,4525	37	37	0,9965	0,8377	0,0000	0,0000	0,0000
6	\checkmark	23.11.2023 12:00	N 55° 10' 50,53255"	E 36° 39' 29,07972"	186,3580	0,1405	0,1042	0,4534	37	37	0,9974	0,8377	0,0000	0,0000	0,0000
7	\checkmark	23.11.2023 12:00	N 55° 10' 50,53267"	E 36° 39' 29,08000"	186,3734	0,1404	0,1042	0,4534	37	37	0,9974	0,8377	0,0000	0,0000	0,0000
8	\checkmark	23.11.2023 12:00	N 55° 10' 50,53270"	E 36° 39' 29,07989"	186,3828	0,1406	0,1043	0,4540	37	37	0,9980	0,8377	0,0000	0,0000	0,0000

Figure 74 – Table

export dataset to jps or RINEX files

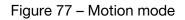
4.4 Recordsets

The menu designed for recordset objects management looks as follow:

	P20 -			
4	Recordsets			
	💦 AntA1			
	BALB_2024_02	*	Properties	Ctrl+Enter
	Extreme	Q	Zoom	Ctrl+Space
	8 log0925c	\approx	Delete	Del
	💄 Low		Visible	
		۲	Antenna	
		Ð	Motion mode	•
		$\Leftrightarrow \Leftrightarrow$	Merge	
		⇔⇔	Split	•
		٠	Precise Point Posi	tioning
			Table View	
		41	Epochs	
		41	Raw data chart	Ctrl+F
		. 1-1	Common time	Ctrl+D
		h.	Common satellite	s Ctrl+G
		4	Ephemeris	Ctrl+E
		(!)	Report	Ctrl+R ►
		59	Export	Ctrl+E ►
			Solution	•

Figure 75 – Recordsets

Properties	a set of tabs and the information are similar to those described in the <i>DATASET</i> section
Zoom	show the point corresponding to the recordset on an enlarged scale in the center of the cartographic window
Delete	delete a recordset
Visible	display of solutions by epoch (receiver and PGO) in the cartographic window
Antenna	selection of the antenna type, determination the type of height, height value and offsets.


Activating the window for editing antenna parameters:

8.			_	~
I Ant	enna	_		×
Туре				
JAVTR	UMPH_LSA NONE		~	Q
Heig	ht			
Туре	Vertical(ARP)			~
Value	0,0000			m
Offse	ts			
North	0,0000			m
East	0,0000			m
Vertical	0,0000			
	0,000			
	OK	Cance	el 🛛	

Figure 76 – Antenna type selection

Motion mode	select the	motion mode fo	or records	ət	
	₽.	Motion mode	×	1	Static
	00	Merge		75	Kinematic

Stop Go

Split

PGO detects the recordset type automatically upon import. The criterion for type determination as static is set in the project properties settings and *Static/Dynamic* tags/events inside the file. The default value of criterion is 5 meters, which means that positions for all epochs for statics are expected to be within 3*5 = 15 meters. Recordset type can be changed manually.

Merge	merging same da	two or more recordsets. taset	Pos	sible	only for reco	ordsets belonging to the
Split	divide th	e recordset into two or m	ore	parts	s by time inter	val or number of parts
		Split	►	⇔⇔	By time]
	•	Precise Point Positioning		⇔⇔	By parts	
		Figure 78 – Split	recc	ordse	t	
Precise Point	Positioning	determination of	coo	rdina	ites by metho	d PPP
Table view		data in tabular fo	rm			

Chapter 4. Source

RecNo	Enable	Time	Latitude	Longitude	Height, m	Sigma N, m	Sigma E, m	Sigma U, m	Satellites	Satellites	RMS , m	PDOP,	GDOP,	HDOP, m
1		22.02.2024	N 55° 10' 50,54678"	E 36° 39' 29,04667"	194,4132	0,0949	0,0803	0,2404	39	39	0,9337	0,6905	0,0000	0,0000
2	\checkmark	22.02.2024 0:00:01	N 55° 10' 50,54696"	E 36° 39' 29,04693"	194,4136	0,0952	0,0806	0,2414	39	39	0,9356	0,6905	0,0000	0,0000
3	\checkmark	22.02.2024 0:00:02	N 55° 10' 50,54678"	E 36° 39' 29,04686"	194,4069	0,0947	0,0802	0,2400	39	39	0,9329	0,6905	0,0000	0,0000
4	\checkmark	22.02.2024 0:00:03	N 55° 10' 50,54702"	E 36° 39' 29,04688"	194,4024	0,0944	0,0800	0,2395	39	39	0,9317	0,6905	0,0000	0,0000
5	\checkmark	22.02.2024 0:00:04	N 55° 10' 50,54688"	E 36° 39' 29,04678"	194,4080	0,0944	0,0799	0,2394	39	39	0,9315	0,6905	0,0000	0,0000
6	\checkmark	22.02.2024 0:00:05	N 55° 10' 50,54705"	E 36° 39' 29,04715"	194,4122	0,0944	0,0800	0,2396	39	39	0,9317	0,6906	0,0000	0,0000
7	\checkmark	22.02.2024 0:00:06	N 55° 10' 50,54702"	E 36° 39' 29,04700"	194,4113	0,0946	0,0801	0,2400	39	39	0,9325	0,6906	0,0000	0,0000
<														>
	count: 36		N 55° 10' 50,54702"	E 36° 39' 29,04700"	194,4113	0,0946	0,0801	0,2400	39	39	0,9325	0,6906	0,0000	

Figure 79 – Table

Epochs data by epoch in t	tabular form
---------------------------	--------------

RecNo	Dataset	Solution type	Engine mode	Time	Status	Latitude	Longitude	Height, m	RMS, m	Satellite
1	Extreme_191856	Nav	Receiver	25.09.2020 19:19:15	code	N 55° 39' 17,32245"	E 38° 06' 11,48603"	147,4649	17,7396	
2	Extreme_191856	Nav	Receiver	25.09.2020 19:19:16	code	N 55° 39' 17,32017"	E 38° 06' 11,48633"	147,2707	17,5289	
3	Extreme_191856	Nav	Receiver	25.09.2020 19:19:17	code	N 55° 39' 17,32509"	E 38° 06' 11,49181"	147,1898	17,9174	
4	Extreme_191856	Nav	Receiver	25.09.2020 19:19:18	code	N 55° 39' 17,33060"	E 38° 06' 11,49803"	147,1517	18,0027	
5	Extreme_191856	Nav	Receiver	25.09.2020 19:19:19	code	N 55° 39' 17,32691"	E 38° 06' 11,49800"	147,0732	17,5189	
6	Extreme_191856	Nav	Receiver	25.09.2020 19:19:20	code	N 55° 39' 17,32612"	E 38° 06' 11,49900"	146,9787	17,2008	

Records count: 60178 | Selected: 0 |

Figure 80 – Table

- Solution type navigation, floating, fixed.
- Engine mode coordinates calculated by the receiver or PGO
- Status depends on the receiver or PGO solution

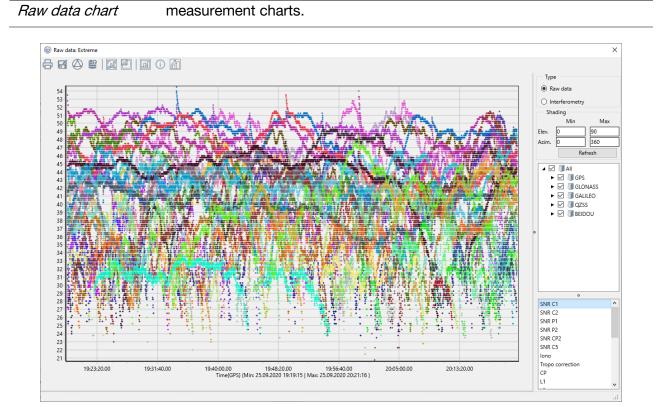


Figure 81– Measurement charts

The raw data shows base to rover single differenced GNSS signals values. Interferometry shows satellite to satellite single differenced GNSS signals values. Statistics are displayed both on the screen and exported to a text file.

Common time chart for recordsets time (CTRL+ select recordsets)

Common satellites diagram of common satellites for recordsets (CTRL+ select recordsets)

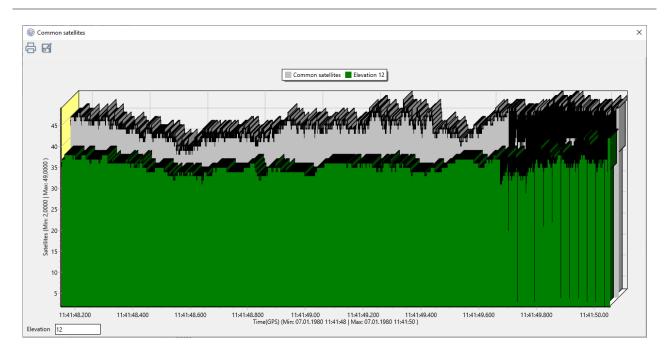


Figure 82 – Common satellites diagram

Ephemeris	diagram for ephemerides loaded into the project
Report	generate a report

🖌 Report - Viewer	ben न Save 🗸 🖂 🗸		I 🗎 🗈 🛄 🔎 🗹 🕽 🐺 III - 🗉	Close			
îme	GPS	- Angle ty					
lime view	DateTime	↓ Angle ro	und 5				
Time format	3/5/2024 5:26:51 PM	Length r	ound 4				
Coordinate System	WGS84	Project e	poch 0				
Unit type	meters	~					
		60	Reset Submit	gation	Report1		
		00	<u>, </u>	gation	Report1		
			<u>, </u>	gation		Frogram	ProGeoOffice
			Navi	<u>_</u> 0		Program Version	ProGecOffice 1.84.4
			Navi	Creator		5.1.30000	
			Navi CoordinateSystem W6584 Height type Ellippoidal	Creator Agency		5.1.30000	
		Reordaet :	CoordinateSystem WG384 Height type Ellippoidal Units meters	Creator Agency		Version	
		Recordset: Mode: Antenna:	CoordinateSystem WG584 Height type Ellipsoidal Units meters Time GP5	Creator Agency Processed	05.03.2024 17:26:55	Version	

Time	Latitude	Longitude	Height, m	RMS , m	PDOP	TOffset	NumSat
2020-09-25 19:19:15.000	N 55° 39' 17,32770"	E 38° 06' 11,40770"	143,5888	2,411	0,942	61 712,855	31
2020-09-25 19:19:16.000	N 55* 39' 17,30580"	E 38" 06' 11,41144"	143,3503	2,431	0,942	61 406,807	31
2020-09-25 19:19:17.000	N 55° 39' 17,32601"	E 38" 06' 11,42268"	142,9874	2,534	0,942	61 100,848	31
2020-09-25 19:19:18.000	N 55° 39' 17,27671"	E 38° 06' 11,44356"	142,0727	2,177	0,925	60 793,890	31
2020-09-25 19:19:19.000	N 55° 39' 17,26426"	E 38° 06' 11,44554"	144,3697	1,880	0,973	60 490,126	30
2020-09-25 19:19:20.000	N 55° 39' 17,32034"	E 38° 06' 11,44570"	142,3316	2,001	0,943	60 183,210	31
2020-09-25 19:19:21.000	N 55° 39' 17,30204"	E 38° 06' 11,44510"	141,8952	2,191	0,943	59 877,312	31

Figure 83 – Report

Export	export recordset data to jps or RINEX files
Solution	set the recordset coordinates corresponding to the coordinates taken
	from the receiver or calculated in the PGO

4.5 Sites

PGO creates object *Site* using the source data and the *Tolerance* criterion for sites. Several recordsets can be assigned to one site, depending on the distance between the positions corresponding to the coordinates of recordsets. The criterion for creating individual sites is set in the project settings. Recordsets that overlap in time create a vector that can be processed. The menu designed for the site objects management looks as follow:

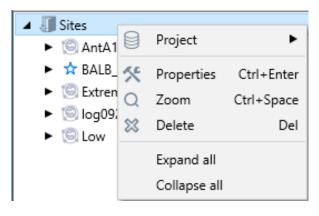


Figure 84 – Sites

Properties

The site properties window contains information about the site coordinates and coordinate errors:

length AntA1 X			
Name AntA1	Name AntA1		
XYZ BLH Gr	id	XYZ NEU	
Coordinates		Sigma	
Latitude N 55°	50' 36,42049"	X 0,8557	m
Longitude E 37°	32' 14,58894"	Y 0,8436	m
Height 204,4	758 m	Z 1,1348	m
EPOCH 0,000	0		
6 WGS84	~		
Comment		·	
	OK	Cancel	

Figure 85 – Site properties

Zoom show the site on an enlarged scale in the center of the cartographic window Delete the item is deleted as an object, but the recordset and dataset are not deleted. Can be restored by selecting the menu item Restore recordset Expand all

expand all nodes in the tab

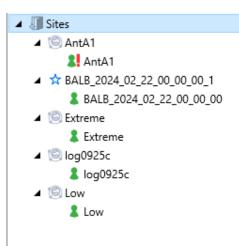


Figure 86 – Expand all

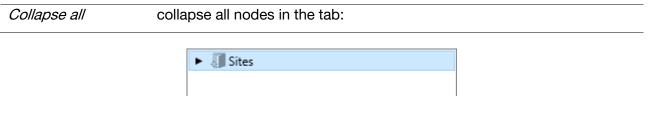


Figure 87 - Collapse all

Change vectors direction set the direction of the vectors (all from the selected site or all to the selected site)

Figure 88 – Change vectors direction

When sites operating in the cartographic window, additional options are available. To access the corresponding menu, select an item by hovering the cursor over it and clicking the mouse, and then press the right mouse button:

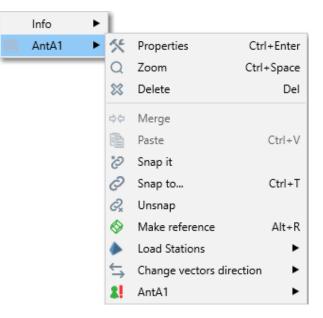


Figure 89 – Site operating

Snap itsnap a site to a reference point. After selecting this menu item, select the
reference point, right-click on it and in the menu that appearSnap heresnap to selected reference site

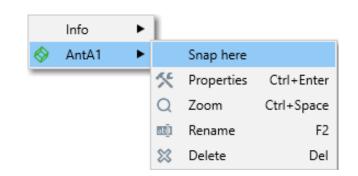


Figure 90 – Snap to selected reference site

Snap to snap site to the reference point selected in the list	
---	--

<pre> LAVH_2023_11_23_12_00_00_1 </pre>		– 🗆 ×
▲ 💹 Reference points	XYZ BLH	H Grid
♦ LAVH(0.0057 m) ♦ DMDV(47678.8962 m)	Latitude	N 55° 51' 47.81243"
NRFM(91350.7216 m)	Longitude	E 37° 28' 59.57865"
NGNK(107433.0248 m) BALC(109516.2756 m)	Height	209.4917 m
 Image: Solutions 	EPOCH	2000.2623
 Image: Receiver 	G WGS84	4 ~
Unsnap Snap to	Cance	21

Figure 91 – Snap to...

Unsnap	unsnap a site from a reference point
Make reference	create a reference point with the coordinates of the site
Load stations	import Continuously Operating Reference Stations data

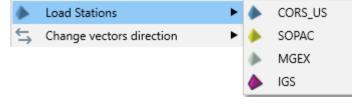


Figure 92 – CORS networks

CHAPTER 5. POST PROCESSING

Post-processing is a *Vector* option. Recall that recordsets which have time overlapped GNSS observation sessions yield a *Vector*. A goal of post-processing is a *Solution*. Depending on a type of rover *Recordset* we distinguish static or kinematic modes of post-processing. Type of recordset is figured out just after importg GNSS data relative to *Criterion for static* in a project settings. *PGO* offers type editing through recordset properties dialog.

Activate *Process* tab in a project pane to get access to post-processing.

Post-processing could be run in a batch mode via *Vectors* item in a *Process* tab of project pane.

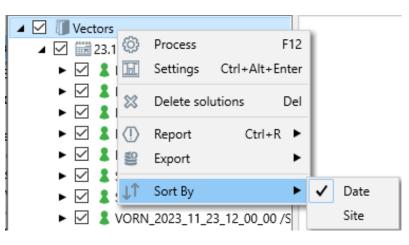


Figure 93 – Sorting vectors

Otherwise, use *Selection by point/rectangle* tool in the main toolbar for post-processing through the map. The post-processing of static data yields the increments of coordinates from base to rover in the geocentric coordinate system. The static *Solution* is shown on the solution layer as a line object. The post-processing of kinematic data yields a set of solution vectors so-called fan. The kinematic solution is shown on the map as a collection of point objects. The point positions are the end of solution vectors. We use *base* and *rover* indications for terminal points of Vector The static engine, as well as kinematic one, use so-called single differences of GNSS data.

Vectors options:

Process	post-processing of all unprocessed vectors
Settings	open process settings window (described below)
Delete Solutions	delete all solutions from a project
Report	create a vectors processing report
Export	export to exchange formats
Sort by	sort vectors by date or site name. Initially Vectors tree is structured by date of the beginning of time span

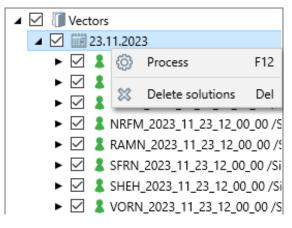


Figure 94 – Date node options

Data item options:

Process	post-processing for all associated vectors
Delete solutions	delete all solutions

The next level of *Vectors* tree corresponds to base object. Sublevels are rovers.

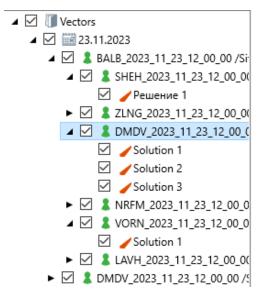


Figure 95 – Vectors tree

Both base site *BALB* and rover site *DMDV* are signed by ¹/₂ static recordset icon.

▲ 🗹 🚺 Vectors	
⊿ 🗹 🚟 23.11.2023	
▲ 🗹 🄱 BALB_2023_11_23_12_00_00_/Si	
▲ 🗹 🄱 SHEH_2023_11 😳 Process	F12
✓ ✓ Решение 1 ► ✓ LNG_2023_11	Del
■ ■ 21NG_2023_11_ ■ ■ ■ DMDV 2023 11 ■ BALB_2023_11_2	3_12_00_00 ►

Figure 96 – Base tree options

Base node options:

Process	post-processing for all unprocessed Vectors
Delete Solutions	delete all solutions related to the base node

The last level of vectors tree is intended for solutions that appear under rover node after postprocessing. Initially the rover node is empty. Processing adds a *Solution* to an item.

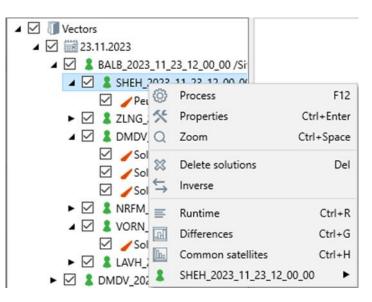
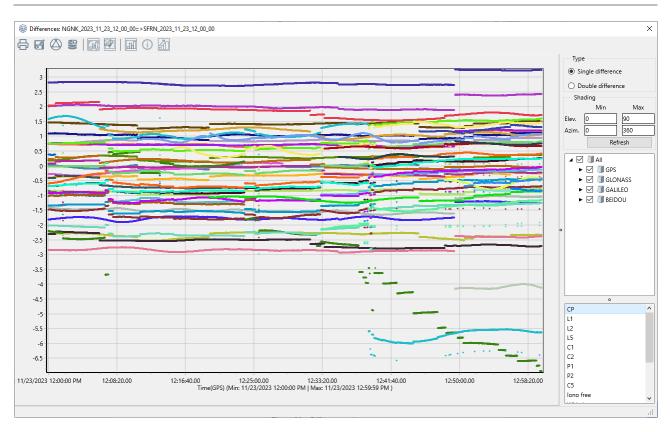


Figure 97 – Rover tree options

Rover node options:


Process	post-processing if no solution exists
Properties	open vector properties window:

BALB_2023_11_23_12_00_00=>SHEH_2023_11_23_12 ×		
☑ Visible on map		
Base	BALB_2023_11_23_12_00_00	
Rover	SHEH_2023_11_23_12_00_00	
Begin time	23.11.2023 ~ 12:00:00	
End time	23.11.2023 ~ 12:59:59 +	
Time span	0 / 1:00:02	
Epochs	3600	
Length	51940,007 m	
Vi	ew base View rover	
	Close	

Figure 98 – Vector properties

View base and *View rover* buttons open relative recordset properties window.

Zoom	scales the map by the length of the corresponding vector
Delete solutions	delete all solutions rover node related
Inverse	change the direction of the vector (which will lead to corresponding changes in the vector tree)
Runtime	opens the <i>Runtime</i> tab, which allows to process a single vector and obtain two or more solutions for it with different settings (described below in the section <i>Processing a Single Vector</i>)
Differences	chart of GNSS signal differences used in post-processing

Figure 99 – Differences chart

Common satellites open the visibility of common satellites for the base and rover chart

Chapter 5. Post processing

5.1 Settings

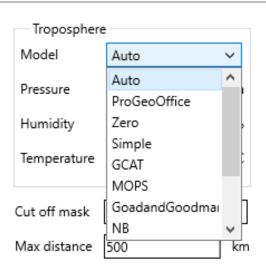
Proce	ess		×
Static	Kinematic		
Engine	Satellites		
Engine ty	/pe Default	lt · · · ·	~
Engine	mode	Troposphere Use precise ephemeris	
Auto	,	Model Auto ~ Interpolate base	
O Fixed	ł	Pressure 980 hPa	
⊖ Float	t	Humidity 50 %	
O Code	2	✓ Temperature 20 °C	
○ L1 o	nly		
() L2 or	nly	Cut off mask 12°	
○ L5 or	nly	Max distance 500 km	
O L1 +	L2 + L5		
⊖ Wide	e lane	Default	
		OK Cancel	

Figure 101 – Process properties

5.2 Static

Engine tab

Regular PGO software is delivered with one default engine. By request additional engines may be activated.


Engine mode options:

Auto	auto detect best combination of base and rover overlapped data
Fixed	automatic mode processing, get a fixed solution only
L1 only, L2 only, L5 only	process L1, L2, L5 data respectively
L1+L2+L5	process L1, L2, L5 all together
Wide lane	process L1 and L2 data in Wide lane combination
Float	not integer processing in Auto mode
Code	обработка по кодовым измерениям

Troposphere tab

Model

a list of most popular modern models

Pressure, Hur	<i>nidity,</i> inpu	t of meteo parameters, <i>Humidity</i> value extremely affects to altitude
Temperature		
Cut off mask	reje	ction satellites data by elevation angle
Max distance		imum baselines length (in km). Focus on this parameter in batch cessing. Some vectors may be skipped/
Use precise epher	date	cess vectors using precise ephemeris if those are available on the e of processing. PGO can automatically download ephemeris from rnet.

Interpolate baseinterpolate base GNSS data if rover data sampling is differentSave residualsstore residuals in a project database. Residual is result of subtraction
measured code or carrier phases values (depending on processing
mode) and a distance between final receiver position and satellite.
Storage of residuals make post-processing slower. In the meantime
residuals chart is a main tool to control post-processing result for data
captured in a bad environment.

Click button to customize Solution object style on a map:

🛞 Style	×
Lines	
Fixed Width < 2	
Color V Arrow	
OK Cancel Default	

Figure 103 – Object style

Satellites tab

Use this option to unable/disable satellites.

🛞 Pro	ocess	×
Static	Kinematic	
Engine	e Satellites	
	Enable / D	isable All
~ GP		
12		
		3) 32 33 54 35 36 37
∨ GLO	DNASS 🔵	
∨ GA	LILEO 🔘	
∨ qz	ss 🔘	
\vee bei	DOU 🔵	
\sim irn	iss 🥘	
		OK Cancel

Figure 104 – Process properties. Satellites tab

5.3 Batch processing

Continuous vectors post-processing could be run by Vectors tree item or using selection Vectors

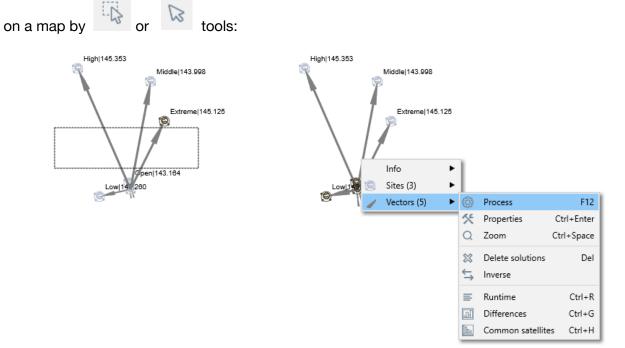


Figure 105 – Vectors selection for processing

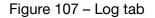

fype	Time	Remaining	Name	Status	Progress	Finished	Speed
	00:00:09	00:00:01	log0925c=>High	phase evaluation		72%	72%/s
\$	00:00:09	00:00:01	log0925c=>Middle	code processing		81%	81%/s
÷	00:00:09	00:00:01	log0925c=>Extreme	base capturing		46%	46%/s
÷	00:00:09	00:00:01	log0925c=>Open	base capturing		17%	17%/s
8	00:00:00	00:00:01	log0925c=>Low	Waiting		0%	0%/s

Figure 106 – Processing progress

۲

Processing progress is shown in a Progress window. Click Log tab looks like this:

11:49:40 11:49:32: : Loading file:///D:/1/Osechenki 2020/2020-09-25/Extreme_191856.jps 11:49:39: : Unknown messages: 22335 10.44 11:49:39: : D:\1\Osechenki 2020\2020-09-25\Extreme_191856.jps finished; 3722 epochs total
11:49:41 11:49:32: : Loading file:///D:/1/Osechenki 2020/2020-09-25/Middle_171317.jps 11:49:39: : Unknown messages: 22323 10.46 11:49:39: : D:\1\Osechenki 2020\2020-09-25\Middle_171317.jps finished; 3720 epochs total
11:49:42 11:49:32: : Loading file:///D:/1/Osechenki 2020/2020-09-25/Open_150728.jps 11:49:40: : Unknown messages: 22329 10.46 11:49:40: : D:\1\Osechenki 2020\2020-09-25\Open_150728.jps finished; 3721 epochs total
Records count: 5 Time: 00:03:17 Time left: 00:00:02 48% Finished / Total : 0/5

Below an information about elapsed processing time and statistics of solutions.

5.4 Single vector processing

This approach makes sense if user wants to refine solution yielded by batch processing or to process vector with different processing settings.

Select the rover node in the vector tree or the vector on the map, right-click and select the vector, then select the *Runtime* menu item:

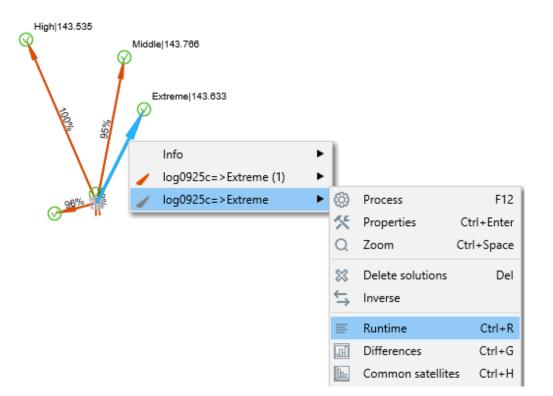
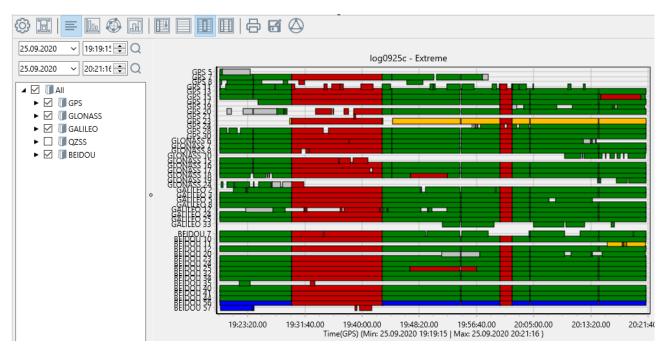
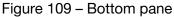




Figure 108 – Runtime

Bottom pane appears:

¢	run post-processing
	post-processing options
	diagram <i>Runtime</i>
	diagram <i>Common satellites</i>
	diagram <i>SkyPlot</i>
EFF.	Differences chart
	select all satellites
	clear chart
	disable satellites
	enable satellites
Ð	print

Chapter 5.	Post processing
đ	save as
\bigcirc	show all

The left pane is intended for satellites disabling and *Start/End* time may be edit. *Settings, Common satellites, Differences* and *SkyPlot* windows were described above

Solution

The item is accessible as through map and from project pane as well.

-	gh 143	3.535				
Ø		Middle 143.766				
		Info	۲	1		
	1	log0925c=>High (1)	►	*	Properties	Ctrl+Enter
	1	log0925c=>High	۲	\otimes	Delete	Del
	_			Q	Zoom	Ctrl+Space
		co/			Disable	Ctrl+D
	0°			\checkmark	Enable	Ctrl+E
				ff	Residuals	Ctrl+F
				(!)	Report	Ctrl+R
				50	Export	•

Figure 110 – Solution menu item

Properties

log0925	c - High / Solut	ion 1			×
Coordinates	tes Statistics Antenna Satellite		Satellites	Settings	
XYZ BLH	Grid			XYZ NEU	
Rover				Increment	
Latitude N 55° 39' 17,71051"			X -14,9590	m	
Longitude	E 38° 06' 09,80	086"		Y -32,8457	m
Height	143,5350		m	Z 21,6486	m
EPOCH	0,0000				
Base				Sigma	
Latitude	N 55° 39' 16,4	6024"		X 0,0072	m
Longitude	E 38° 06' 10,75	5109"		Y 0,0052	m
Height	143,7368		m	Z 0,0069	m
EPOCH	0,0000				
G WGS84	ļ		~	Length 42,0865	m
		Residuals	Dele	te Close	

Figure 111 – Coordinates tab

Coordinates tab

- Rover and Base coordinates on epoch date of the project
- Solution components in XYZ
- Sigmas are diagonal elements of correlation matrix. Only coordinates systems announced in a project are available.

Statistics tab

🎯 log0925c - I	High / Solut	tion 1				×
Coordinates	Statistics	Antenna	Satellites	s Settings		
Begin time				Measurement	t total	461163
25.09.2020	~	18:16:17	•	Measurement	t used	321944
End time						
25.09.2020	~	19:18:18	* *	Ambiguity tot	tal	639
Process time				Ambiguity fix	ed	32
07.03.2024	~	12:55:27	-			
Туре	Fixed			Time span		62 min
RMS residual	0,0112		m	min/km		1473,16
Fix ratio	100		%			
Satellites used	11					
Epochs	3722					
		Residuals	Dele	ete C	lose	

Figure 112 – Statistics tab

- Total and left code and phase data in Solution
- Number of total and left phase ambiguities
- Time span equals epoch number multiplied by record interval
- RMS residuals = sqrt(sum(sqr(v)) / n), v residual, n epoch number
- Fix ratio Fisher statistics
- Left satellites used
- Min/km time span divided by length
- Begin, End time shows time tag of observation session
- Process time post-processing time and date

Antenna tab

🎯 log0925c - High / Solu	ition 1		×		
Coordinates Statistics	Antenna	Satellites	Settings		
Base			Rover		
Туре		_	Туре		
Unknown ~ Q			JAVTRIUMPH_LSA NONE V		
Height			Height		
Type Vertical(ARP)		~	Type Slant(SHMP) ~		
Value 0,0000		m	Value 0,0000 m		
Offsets			Offsets		
North 0,0000		m	North 0,0000 m		
East 0,0000		m	East 0,0000 m		
Vertical 0,0000		m	Vertical 0,0000 m		
Serial number			Serial number		
[Residuals	Dele	Close		

Figure 113 – Antenna tab

Туре	antenna model (NGS US convention)
Height Type	antenna measurement point
Height Value	direct distance between measurement point and ground point
Offsets	distances between ground point and point of interest
Serial number	antenna serial number

Satellites tab

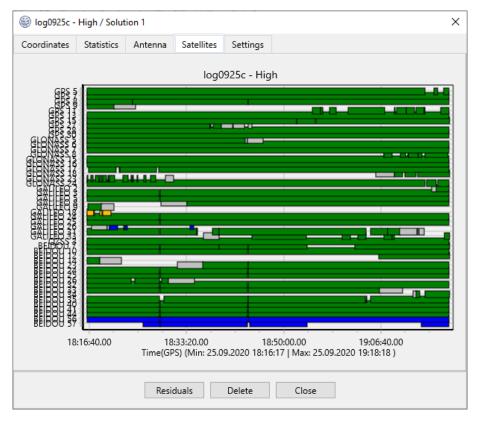


Figure 114 – Satellities tab

Snapshot of Timeline chart.

Settings tab

	- High / Soluti	ion 1					×
Coordinates	Statistics	Antenna	Satellites	Settings			
Engine type	Default						\sim
Engine mod	le	Tropo	sphere			Use precise ephemeris	
Auto		Model	Auto		\sim	Interpolate base	
⊖ Fixed	/	Pressure	980		hPa	Save residuals	
⊖ Float	1	Humidit	y 50		%		
🔿 Code	1	Tempera	ture 20		°℃		
🔿 L1 only	1						
🔿 L2 only	1	Cut off m	ask 12°				
🔿 L5 only	/	Max dista	nce 500		km		
○ L1 + L2 +	L5 🧹						
⊖ Wide lane	-						
		Resid	luals	Delete		Close	

Figure 115 – Settings tab

Snapshot of post-processing settings window.

5.5 Kinematic solution

Kinematic solution

Get access to solution option by selection Vector item on a left pane or Vector object on a map:

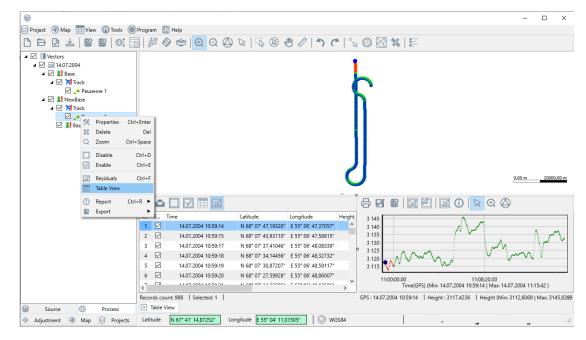


Figure 116 – Table view

In fact, almost all options are similar to above mentioned with exception of Table View. The option opens new bottom pane with a table of coordinates with statistics and a chart of vertical profile. By selection on a table or on a chart relative objects on map being selected also and vice versa.

Residuals

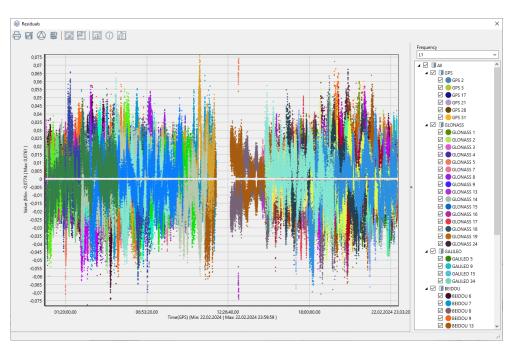


Figure 117 – Residuals

Statistics are shown in status bar. Otherwise, to reach statistics for single satellite right click on it on a right pane and get Info window or export to *.csv file:

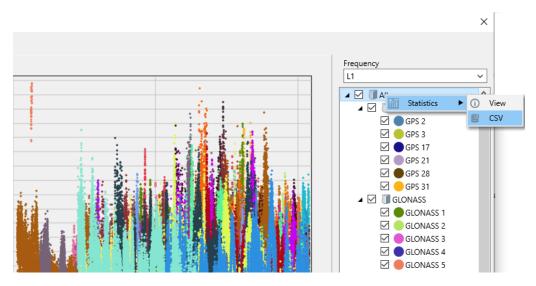


Figure 118 – Save residuals

or select View to display statistics on the screen.

۲						×	<
PRN: Samples: RMS : Minimum: Maximum: Peak to peak: Summa: Average: Variance:	GPS 2 11348 0,0113 -0,0398 0,0340 0,0738 -53,9471 -0,0048 1,7071	GPS 3 11360 0,0100 -0,0338 0,0232 0,0570 -33,5470 -0,0030 1,2270	GPS 17 10188 0,0113 -0,0257 0,0429 0,0686 100,2055 0,0098 2,2850	GPS 21 9862 0,0105 -0,0428 0,0312 0,0740 -40,8381 -0,0041 1,2479	GPS 28 11165 0,0125 -0,0307 0,0369 0,0676 8,6652 0,0008 1,7395	GPS 31 8507 0,0129 -0,0450 0,0602 0,1052 19,5385 0,0023 1,4534	G 1 0 - 0 8 0 2
<							>

Figure 119 – Statistics

Report

To generate a report for all solutions select the *Vectors* node, right-click and select *Report*. To generate a single solution report do the same steps for this solution:

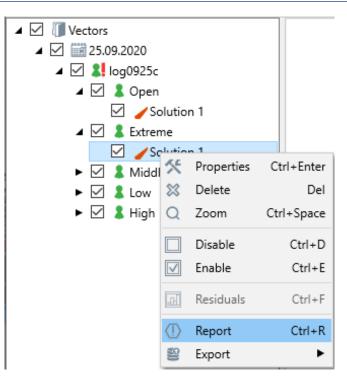


Figure 120 – Single solution repor

Report - Viewer	leport - Viewer Print 😇 Open 🔚 Save 🗸 🖙 🖕 📮 📮 📴 👔 👔 🎦 🗊 📳 👂 📰 📮 😳 🐨 🔛 🛛 Close							
Time	GPS ~	Angle type	Degress, Minutes and Seconds v					
Time view	DateTime ~	Angle round	5					
Time format	3/7/2024 5:19:35 PM ~	Length round	4					
Coordinate System	WGS84 ~	Project epoch	0					
Unit type	meters ~]						
			Reset Submit					

	Single sol	ution re	port
Solution name	log0925c - Extreme	Solution type	Fixed
Process time	07.03.2024 12:56:11	Fix ratio	95%
Begin time	25.09.2020 19:19:15	Time span,min	62
End time	25.09.2020 20:21:16	Interval, sec	1,000
Measurement used	349957 of 474385 (26% discarded)	RMS	0,013(m)
Satellites used	GPS(6)/GALILEO(6)/QZSS	(6)	
Used observations	C1 CP P1 L1 C2 CP2 P2	L2 C5 L5	
Ephemeris	Broadcast	Temperature,°C	20
Cut off angle,°	12	Pressure, hPa	980
Engine	Default	Humidity, %	50
Processing mode	Auto	1. AS	V
Point name	log0925c		Extreme
Session name	log0925c.;	jps	Extreme_191856.jps
Receiver	JAVAD TRIU	JMPH_1M	JAVAD TR_LS4
Receiver number	35003		16
Receiver ID	055X908K4I	06190QDSPVJA2QGHS	1WUDUG4050JNN371LGYHOEA9DT
Antenna	0	- est	JAVTRIUMPH_LSA NONE
Serial number			
Antenna height, (m)	Vertical (A	ARP) 0,000	Slant (SHMP) 0,000
	5155. °A. 's. 36353636363636363636363	888. 4	*****

Figure 121 – Single solution report

CHAPTER 6. ADJUSTMENT

Geodetic network adjustment uses Weighted Least Squares method for solving over-determined linear system:

$$AX = L , (6.1)$$

Depend on 3D/2D adjustment mode the design matrix A has 3*n or 2*n rows (n - number of solutions) and a structure comprising +1 and -1. X is a matrix of unknown node coordinates. The number of unknowns m equals the number of network nodes multiplied by 3 or 2 also. L is an array of Solution components dX, dY, dZ. In the case of adjustment in geocentric linear equations system is:

$$X_M - X_N = dX;$$

$$Y_M - Y_N = dY;$$

$$Z_M - Z_N = dZ$$
(6.2)

where X, Y, Z are unknown coordinates of M and N network points.

The redundancy of the network adjustment problem is a number of rows minus the number of columns. Subject to a weight matrix W solution of [6.1] is given by solving:

$$A^T W A X = A^T W L \tag{6.3}$$

Weight matrix W is a block diagonal matrix formed using Solution covariance matrixes. Network adjustment solves two main problems:

1. Get post-processing solution accuracy estimation, outlier and blunder detection.

2. Calculation of final point coordinates tied to reference points and statistics.

As much as coordinates are not a goal of the first problem it runs as inner constrained mode. To overpass the singularity of normal matrix we use singular value decomposition (SVD) method. The research of network adjusted in inner constraints mode is intended for detection and making odd from final adjustment results blunders and estimation of systematic errors impact. The detection of blunder is treated using Pope's τ -test.

$$u_i = \frac{v_i}{\sqrt{q_{ii}}} , \qquad (6.4)$$

q_{ii} are diagonal elements of the cofactor matrix.

This method computes standardized residuals detect blunders in iterations and remove suspicious data from design matrix. The iterations continue until blunders have been disable and χ^2 test passed depend upon the significance level and the degree of freedom.

$$Q_{\nu\nu} = Q_u - A Q_{xx} A^T, ag{6.5}$$

where Q_u is a block diagonal matrix of 3x3 dimension solution covariance matrixes, Q_{xx} is inverse of A^TWA matrix.

 $\tau\text{-}$ test treats solution as a blunder if a residual exceed τ - value.

$$\frac{\tau \alpha_0}{2}$$
, $n-m$ is determined in τ - distribution $\alpha_0 = 1 - (1-\alpha)^{\frac{1}{n}}$.

a is user defined significance level (68%, 95%,99%).

Level 99% corresponds to the most soft restriction and 68% level is the most strong.

Note that τ -test uses standardized residuals for blunder detection instead of its absolute value so small residuals could be treated as blunders also.

Least Squares method deals optimal results in geodetic adjustment if GNSS data post-processing solution errors are normally distributed. χ^2 -test checks if solutions errors are normally distributed. It compares so-called unit weight error μ and χ^2 statistics.

$$\chi_L^2 < \mu^2 = \frac{1}{n-k} \times V^T P V < \chi_H^2$$
(6.6)

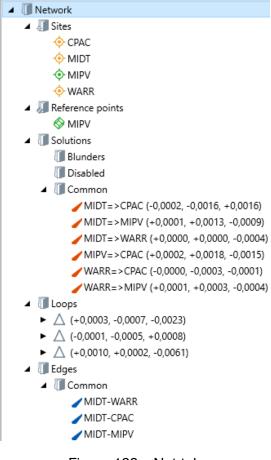
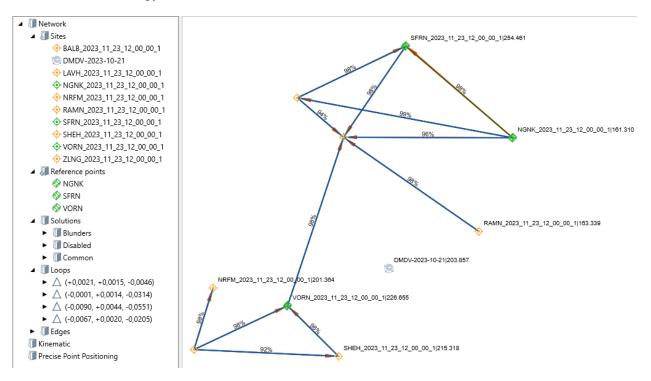
In fact χ^2 - test estimates consistency of solution covariance matrix Q_u relative to a posteriori statistic.

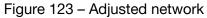
In the case of geodetic adjustment failed χ^2 - test it indicates that some observation sessions were too short. Due to time correlation of GNSS data solution accuracy is overrated. In the meantime loop closure are often big and μ is out of limits.

Inner constraints adjustment runs in relative coordinate systems. To show inner adjustment result in a cartographic window we snap relative coordinated network to first listed reference point (if it exists) or to first listed site. Second goal of adjustment are coordinates of measured ground points. To reach it the network must be snapped to ground reference points and final adjustment should be running under external constraints.

6.1 Net

To start adjustment switch to *Adjustment* tab in *Project* pane. As well as a subject of adjustment are *Solutions* than complete *Process* procedure in advance. The objective are *Sites*. First step of adjustment (Inner constraints) evaluates Loops closure. We use *Edge* category to show loops. In fact *Edge* appears as a result of *Solutions* adjustment. Remember that *Solution* is a result of *Vector* post-processing. There is a special layer to represent *Edges* in a map pane. Loops closure deals simple additional estimation of post-processing data accuracy. It is the sum of solutions components along with a *Loop*. Loops detection is running during network adjustment procedure.


Figure 122 - Net tab

Upper items in *Adjustment* tab:

Net	main adjustment item						
Sites	list of adjustment objects						
Reference points	list of control ground points with postulated coordinates, external constraints						
Solutions	subjects of adjustment						
	Blunders - not passing tau-test Solutions						
	Disabled - solutions excluded in interactive mode						
	Common - solutions passed all test and affected to final result						
Loops	a closed circuit for which the non-closure values are calculated						
Edges	result of equalization of Solutions						
	 Common - in a closed loop with a passed τ-test 						
	• Single ended having only one common point with the network						
	Bridges - connecting groups of closed loops						
	 Blunders - failed τ-test 						
Kinematic	kinematic solutions						
Precise Point	site precise positions						
Positioning							

Introduce a terminology of other items:

Initially, sites are generated for raw data recordsets upon standalone solution. Cartographic sign of <i>Site</i> reflects its origin - receiver calculated, standalone, post processed, adjusted. The spapped sites are calculated by
standalana past processed adjusted. The spanned sites are calered by
standalone, post-processed, adjusted. The snapped sites are colored by
green. For example, site DMDV is on a standalone position, NFRM is on
post-processing solution, VORN snapped to reference.
linear object created through adjustment. Edge connects two adjusted
sites and forms a network structure. The edges are shown on a special map
layer. There is Edge table in adjustment report. It is used for residuals and
relative error publishing. Edge types:
edge that shares with a network one site only
edge that connects loops. It does not form itself any loop
edge that has not passed τ -test. By default blunders are colored brown
others edges
a list of independent loops generated under restriction of minimum edges
quantity in a loop

Loop closure residuals are indicated depending on adjustment mode (XYZ/NEU). To get access to *Net* items point on it and right-click mouse button:

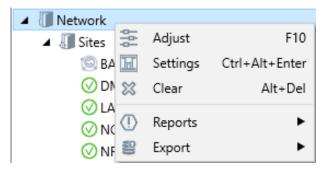


Figure 124 – Right-click menu items

Adjust	run network adjustment. Last adjustment will be dropped automatically
Settings	involves a dialog window showed on Figure 125. Adjustment settings
Clear	drops the last adjustment
Report	generates standard report
Exports	output files in most popular format

6.2 Adjustment settings

le Static	×
Static	
Blunder rejection	Blunder detection
Automatic	XYZ
○ Interactive	⊖ NEU
Constraints	Confitence Level
🔿 Inner	☑ Tau test 95% ✓
Reference	Chi2 95% ~
Loops	
E horz 0,0500 m	A horz 1,000 ppm
E vert 0,1000 m	A vert 2,000 ppm
ОК	Cancel

Figure 125 – Adjustment settings

Blunder rejection	
Blunder rejection	scenario of blunders processing
	 Automatic rejection - adjustment is running in iteration. Blunders are excluded step by step until they are canceled
	• <i>Interactive</i> - adjustment with a dialog. This allows to cancel a solution at each iteration step instead of batch blunder processing in above mentioned automatic mode.
Blunder detection	
Blunder detection	blunders qualification in inner constraints adjustment:
	• XYZ - residuals are calculated in a geocentric coordinate system
	 NEU - residuals are calculated in the topocentric coordinate system (Northing, Easting, Up). There is additional specification 2D/3D to separate plane and vertical sources of errors. If an edge was marked as a blunder in NEU 3D-mode then it makes sense to readjust network as 2D to exclude error in vertical components which happens due to wrong antenna height or type input.

Confidence level

Post-processed solutions that based on GNSS data obtained in a short session of observation may have low absolute accuracy and a good statistics - small standard deviation errors (sigmas - square route of diagonal elements of cofactor matrix). Thus its impact in adjustment is overvalued due to big values of weight matrixes. In the meantime, edge residuals mustn't exceed sigma more than in 2-5 times in the case of the normal distribution of errors. Otherwise, the Solution should be detected as a blunder. The settings of confidence level limit allow to control blunder detection procedure. From the other hand value of unit weight error must correspond to Solution accuracies. Regular μ value varies from 0.4 to 1.6. Formula [5.6] computes more accurate these limits using number degrees of freedom and confidence level value. 99% level is the widest limit.

to pass χ^2 - test well.

Constraints

Inner adjustment of free network with no constraints. Residuals depend on network geometry and solution quality. It is a significant preliminary network adjustment which is running automatically for constrained network also. We recommend run it in advance separately as it is a best way for postprocessing cancellation of outliers. Inner constraints adjustment computes site positions in a relative coordinate system. Meantime results might be similar to those of a case of fixed constraints adjustment with one reference point. Fixed

adjustment which could be completed if a network Sites were snapped minimum to one reference point. Otherwise, a warning appears. Snapped Sites position left steady. Reference points accuracy statistic does not affect to residuals and computation but used for accuracy estimation.

Loops

Constant E (in meters) and linear parameter A (in ppm) define an acceptable limit for loop closure. An equation is:

$$\Delta L = E \times \sqrt{N} + A \times L , \qquad (6.7)$$

where N- edges quantity in a loop, L - length of loop.

Loops with overpassed closure of are colored in red in the left project pane.

Interactive

This dialog window appears if interactive adjustment mode was selected:

RecNo	Status	Name	X, m	Y, m	Z, m	Tau, m 🛛 🞝	/ Reject
1	/	RAMN_2023_11_23_12_00_00_1 - NRF	0,1042	-0,3017	-0,0542	23,63 ^	/ Reject
2	1	NRFM_2023_11_23_12_00_00_1 - LAVH	0,0398	-0,0372	-0,0244	4,24	Restore
3	1	BALB_2023_11_23_12_00_00_1 - NRFM	-0,0378	0,0311	0,0138	4,15	
4	1	RAMN_2023_11_23_12_00_00_1 - VOR	0,0048	0,0426	0,0584	4,12	Subnet Tau = 3,209
5	1	ZLNG_2023_11_23_12_00_00_1 - NRFM	-0,0268	0,0503	0,0527	4,04	
6	1	NRFM_2023_11_23_12_00_00_1 - VOR	0,0321	-0,0375	-0,0274	4,00	Chi high = 2,241
7	1	SHEH_2023_11_23_12_00_00_1 - NRFM	-0,0337	0,0381	0,0248	3,81	Chi2 test : No
8	1	RAMN_2023_11_23_12_00_00_1 - ZLN	-0,0130	0,0259	0,0219	3,80	
9	1	DMDV_2023_11_23_12_00_00_1 - NRF	-0,0310	0,0413	0,0383	3,43	Mu = 6,942
10	1	RAMN_2023_11_23_12_00_00_1 - SHE	-0,0295	0,0103	0,0030	3,27	Chi low = 0,031
11	1	RAMN_2023_11_23_12_00_00_1 - LAVH	-0,0256	0,0213	0,0042	2,96	CHI 10W = 0,051
12	1	RAMN_2023_11_23_12_00_00_1 - NGN	-0,0101	0,0203	0,0240	2,48	
13	1	RAMN_2023_11_23_12_00_00_1 - SFRN	-0,0173	0,0178	0,0123	2,16 🗸	

Figure 126 – Adjust interactive

There are a list network edges residuals and τ -statistics in a table. X, Y, Z are components of edge residuals. *Tau* column includes maximum components of standardized residuals along X, Y, Z / NEU axes. Right from the table shown common net statistics: common τ value, unit weight error (UWE), low and high limits of χ^2 -test for UWE.

To exclude an edge from adjustment, select a row in a table and click *Reject*. Press and hold *Ctrl* or *Shift* button to exclude more edges at once. By clicking *Reject*, the *Restore* button reruns the adjustment. The dialog window *Adjust* interactive appears once more. The *Complete* button is intended to cancel iterations.

The main goal of interactive mode is a χ^2 -test achievement. To reach it we recommend to consequentially reject edges with maximum value in a Tau column. It is not possible to reject *Bridge* edge as it will split net in two subnets! In this case a warning appears. A network could be adjusted

in subnets by disabling edge solution in advance before start an adjustment. Rejected edge is kept in a table but corresponding row shown in gray. For restoring it select row and click *Restore*.

6.3 Kinematic solution adjustment

Multiple bases kinematic data processing generates new trajectory object in the Kinematic node with options.

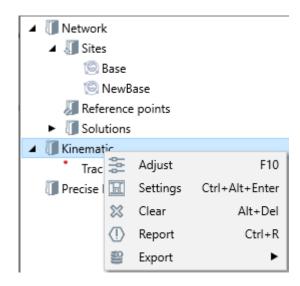
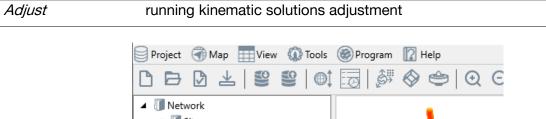



Figure 127 – Kinematic node



Figure 128 – Adjusted kinematic

le Kinematic	×
Kinematic	
Use fixed solution	
Fixed priority	
Use float solution	
Maximum length of base line	
Range 0	km
OK Cancel	

Figure 129 – Adjustment settings

Settings	adjustment settings
	 Use fixed solution - only fixed solutions are taken in account
	 Fixed priority - ignore float solution if fixed one exists
	 Use float solution - both float and fixed solutions will be adjusted using epoch solution covariance matrixes
	 Maximum length of base line range parameter sets maximum acceptable in adjustment distance between base and rover epoch positions ю эпоху
Clear	remove the last adjustment from the project
Report	report generation:
Export	export to exchange formats

nt 🛅 O	ipen 🔚 Save 🗸 🖾 🗸	C, C, D, D 🗉 🚺	1 🗈 🔳 🔎 🖬 🕽	€→ 00 × €→	Close		
	GPS	 Angle type 	Degress, Minutes and Seconds	~			
w	DateTime	Angle round	5				
mat	3/14/2024 2:28:02 PM	Length round	4				
ate System		Project epoch	0				
-			0				
e	meters	~					
			Reset	Submit			
1	Coordinat Height ty	r pe E llipsoidal	Creator Agency			ogram Pro ersion 1.8	
Use fix	Height ty Units Time xed: Yes	npe Ellipsoidal meters GPS Fi	Agency Process xed priority:	ed 14.03.2024 Yes	Ve	1. 2010/00/00	
Use flo	Height ty Units Time xed: Yes pat: No	npe Ellipsoidal meters GPS Fi Ma	Agency Process	ed 14.03.2024	Ve	1. 2010/00/00	
Use flo Name	Height ty Units Time xed: Yes pat: No	npe Ellipsoidal meters GPS Fi Ma rack(NewBase,Base)	Agency Process xed priority: ximum range:	red 14.03.2024 Yes 0	Ve 14:28:05	rsion 1.8	
Use flo Name	Reight ty Units Time xed: Yes pat: No T Time	rpe Ellipsoidal meters GPS Fi Ma rack(NewBase,Base) Latitude	Agency Process xed priority: ximum range: Longitude	ed 14.03.2024 Yes 0 Height, m	Ve 14:28:05	RMS	4.4 Fi
Use flo Name No 1 20	Height ty Units Time exed: Yes pat: No T Time 004-07-14 11:00:00.000	rpe Ellipsoidal meters GPS Fi Ma rack (NewBase, Base) Latitude N 68" 05' 16,33684"	Agency Process xed priority: ximum range: Longitude E 55° 07' 01,10016*	ed 14.03.2024 Yes 0 Height, m 3114,7005	Ve 14:28:05 	RMS 0,396,m	4.4 Fi
Name No 1 20 2 20	Reight ty Units Time xed: Yes pat: No T Time	rpe Ellipsoidal meters GPS Fi Ma rack(NewBase,Base) Latitude	Agency Process xed priority: ximum range: Longitude E 55° 07' 01,10016* E 55° 07' 01,31155*	ed 14.03.2024 Yes 0 Height, m	Ve 14:28:05	RMS	4.4
Use flo Name No 1 20 3 20	Height ty Units Time xed: Yes pat: No T Time 004-07-14 11:00:00.000 004-07-14 11:00:00.000	pe Ellipsoidal meters GPS Fi Ma rack(NewBase,Base) Latitude N 68* 05' 16,33684" N 68* 05' 13,11139"	Agency Process xed priority: ximum range: Longitude E 55° 07' 01,10016*	ed 14.03.2024 Yes 0 Height, m 3114,7005 3114,8254	Ve 14:28:05 	RMS 0,396,m 0,395,m	4.4 Fi
Use flo Name 1 20 3 20 4 20	Height ty Units Time ced: Yes pat: No T 004-07-14 11:00:00.000 004-07-14 11:00:01.000 004-07-14 11:00:02.000	pe Ellipsoidal meters GPS rack (NewBase, Base) Latitude N 66* 05' 16,39664" N 68* 05' 13,11139" N 68* 05' 09,82611"	Agency Process xed priority: ximum range: Longitude E 55° 07° 01,31155° E 55° 07° 01,31155°	ed 14.03.2024 Yes 0 Height, m 3114,7005 3114,8284 3114,9968	Ve 14:28:05 Residuals 0,000,m 0,000,m 0,000,m	RMS 0,396,m 0,395,m 0,395,m	4.4 Fi Y Y
Use flo Name No 1 20 2 20 3 20 4 20 5 20	Height ty Units Time cad: Yes pat: No Time T 004-07-14 11:00:00.000 004000 004-07-14 11:00:00.000 004-07-14 11:00:00.000 004-07-14 11:00:00.000 004-07-14 11:00:00.000	pe Ellipsoidal meters GPS rack (NewBase, Base) Latitude N 68° 05' 16,33694" N 68° 05' 19,31139" N 68° 05' 09,82611" N 68° 05' 06,54108"	Agency Process xed priority: ximum range: Longitude E 55° 07' 01,10016° E 55° 07' 01,31156° E 55° 07' 01,51525° E 55° 07' 01,70596°	red 14.03.2024 Yes 0 Height, m 3114,7005 3114,8254 3114,9968 3115,2451	Ve 14:28:05 Residuals 0,000,m 0,000,m 0,000,m	BMS 0,396,m 0,395,m 0,395,m	4.4 Fi ¥ ¥
Use flo Name No 1 20 3 20 4 20 5 20 6 20	Height ty Units Time cad: Yes pat: No Time T 004-07-14 11:00:00.000 00 004-07-14 11:00:02.000 00 004-07-14 11:00:02.000 00 004-07-14 11:00:02.000 00	pe Ellipsoidal meters GPS rack (NewBase, Base) Latitude N 68° 05' 16,33684° N 68° 05' 19,31139° N 68° 05' 09,82611° N 68° 05' 09,82611° N 68° 05' 03,26694°	Agency Process xed priority: ximum range: Longitude E 55° 07' 01,10016" E 55° 07' 01,31155" E 55° 07' 01,01525" E 55° 07' 01,70596" E 55° 07' 01,88494"	Yes 0 <u>Height, m</u> 3114,7005 3114,8284 3114,968 3115,2451 3115,5402	Ve 14:28:05	BMS 0,396,m 0,395,m 0,395,m 0,395,m 0,395,m	4.4 F1 X X X X X X X X X X X X X X X X X X

Figure 130 – Adjusted kinematic report

The adjustment of kinematic solutions is performed both for trajectories that have several solutions from different base points, and for trajectories that have one solution. In the latter case, the adjusted coordinates will coincide with the coordinates obtained from processing.

CHAPTER 7. PROJECT SETTINGS

Use the main program menu to get access to the Settings option:

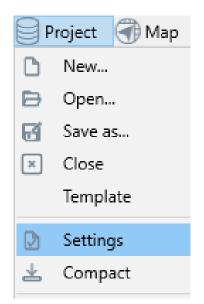


Figure 131 – Project menu item

Open the *Project Properties* window, select *Project*, then *Settings* in the main menu. The left side of the *Project Properties* window contains information about the location of the project file and the date it was created:

Project	t settings			×
Filename	D:\1.pgx		Max epoch gap	300
Created	14.03.2024 ~ 16:14:09 ÷ Q		Min recordset size	3
Creator			Criterion for static	5,00 m
Agency		c	Tolerance for static	3,00 m
Comment			Max vector length	3000 km
			Epoch	06.01.1980 ~ Q
	ОК	Car	ncel Default	

Figure 132 – Project settings

When creating a project, the *Creator* and *Agency* fields are filled automatically following the example of the previous project.

On the right of the window, you can set the following parameters:

Max epoch gapthe maximum number of skipped epochs between any two adjacentepochs in the sample

Min sample size	minimum number of epochs to create a recordset
Criterion for static	is the coefficient multiplied by the standard error of the epoch for the sample. If the coordinates calculated for all epochs are inside a circle with a radius equal to the criterion, the sample is determined by the program as static. Otherwise, the sample is defined as kinematic
Tolerance for static	The maximum distance at which the record sets refer to the same point
Max vector length	maximum length of processed vectors
Epoch	the date of the project
The Default button	restores the default window settings

CHAPTER 8. COORDINATE SYSTEMS MANAGER

The tool is available through main menu *Program* item:

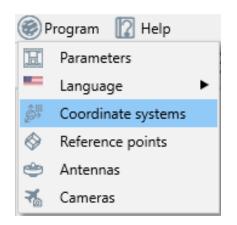
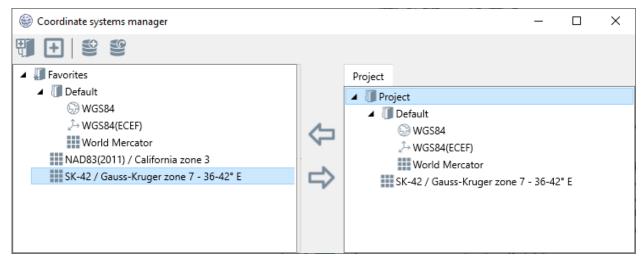
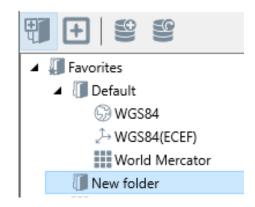


Figure 133 – Coordinate systems item

button on a toolbar:




Figure 134 – Coordinate system manager

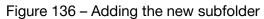

Default coordinate systems are:

Figure 135 – Default coordinate systems

Click button to add a subfolder Favorites root item:

To edit subfolder's name double click on it.

+

button to customize a list of preferable coordinate systems:

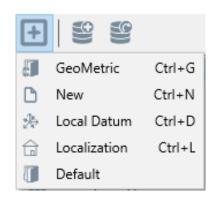


Figure 137 – Coordinate system creation way

and choose way to add a new coordinate system:

GeoMetric	copy the coordinate system from the GeoMetric database
New	create a new coordinate system
Local datum	create a coordinate system by datum calculation
Localization	create a coordinate system by localization
Default	create a standard coordinate systems folder

8.1 GeoMetric database

Select GeoMetric for searching coordinate system in GeoMetric database,

leo Metric	_		×
Search by Name		Q	୲
▲ (] Continents			
► 🗍 Africa			
Image: Image: Antarctica Image: Image: Antarctica Image: Image: Image: Image: Antarctica Image: I			
🕨 🚺 Asia			
► 🕼 Europe			
II North America			
I Oceania			
 I South America 			
🔺 🗍 Global			
► 🗍 ITRF			
► 🕼 PZ-90			
► [] WGS 72			
 WGS 72BE 			
► 🕼 WGS 84			
Custom transformation			
Geoid Add		Cance	2l

Figure 138 – Node selection

select *Continents* to select coordinate systems by continent name or *Global* to open a list of global coordinate systems, select the country and the required coordinate system:

leo Geo Metric	_		×
Search by Name ~		Q	\otimes
II Russian Federation			^
 GSK-2011 6-degree Zones 			
► 🗍 SK-42			
► 🗍 SK-95			
GS-63 St. Petersburg Region / Z2			
GS-63 St. Petersburg Region / Z3			
GS-63 St. Petersburg Region / Z3.5			
GS-63 St. Petersburg Region / Z4			
GS-64 / St. Petersburg			
MGGT-1 / Moscow Region			~
Custom transformation			
Geoid Next		Cance	I

Figure 139 – Coordinate system selection

If there are several transformations for a coordinate system, you should select the *Custom transformation* checkbox, then click the *Next* button, and select transformation in the valid transformations list for selected coordinate system:

leoMetric	_		×
Name SK-42 / MSK-02 zn. 2 Resp. Bashkortostan 10/3/2024 1:29:16 PM			
Q Show properties selected transformation			
A SK-42 to WGS 84 / Default / MSK-02 zn. 2 Resp. Bashkortostan			
🕀 SK-42 to WGS 84 / GOST R 51794-2008 / MSK-02 zn. 2 Resp. Bashkort	tostan		
Back Add]	Can	cel

Figure 140 – Transformation selection

Select a transformation and click parameters:

Qs	Show	properties	selected	transformation
----	------	------------	----------	----------------

to view transformation

🛞 SK-42 / MSK-02 zn. 2 Resp. Bashkortostan	- 🗆 X
Helmert Transformation (7-param. linear)	Transverse Mercator
X-axis translation 23,570 m	Latitude of Origin N 0° 00' 00,00000"
Y-axis translation -140,950 m	Central Meridian E 58° 01' 60,00000"
Z-axis translation	Scale Factor
-79,800 m	1,000000
X-axis rotation 0° 00' 00,00000"	False Easting 2300000,000 m
Y-axis rotation -0° 00' 00,35000"	Flattening 298,300000000
Z-axis rotation -0° 00' 00,79000"	Prime meridian E 0° 00' 00,00000"
Scale difference -0,220 ppm	False Northing -5409414,700 m
Semi-major axis (source) 6378245,000 m	Semi-major axis 6378245,000 m
Semi-major axis (target) 6378137,000 m	S III Forward
Flattening (source) 298,30000000	
Flattening (target) 298,257223563	
Prime meridian (source) E 0° 00' 00,00000"	
Prime meridian (target)	
E 0° 00' 00,00000"	
🔊 🔶 🏷 Backward	

Figure 141 – Transformation parameters

then click the *Add* button to add a coordinate system to the list or the *Back* button. To select a geoid model click the *Geoid* button and select the required geoid model:

leo Metric	_		\times
Filter by coordinate system			
 \$ EGM2008 geoid g1 EGM2008 (Earth) \$ EGM96 geoid g1 EGM96 (Earth) \$ GAO2012 geoid g1 GAO2012 (Earth) \$ Malin Head g1 OSGM15 Malin (Ireland) 			
Back	c	Add	

Figure 142 – Geoid model selection

then click the *Add* button to add a coordinate system to the list or the *Next* button to return to the transformation selection window (if the *Custom transformation* switch was selected), then click the *Add* button. The selected coordinate system will be added to the selected folder of the *Favorites* node.

t - S	
🔺 🚛 Favorites	
🕨 🚺 Defau	lt
🔺 🚺 New f	older
SK	-42 / Gauss-Kruger zone 7 - 36-42° E
SK	-42 / MSK-01 zn. 2 Resp. Adygeya / EGM2008 (Earth)
SK	-42 / MSK-02 zn. 2 Resp. Bashkortostan / EGM2008 (Earth)
🕞 Amers	foort
🕞 ED50	
NAD8	3(2011) / California zone 3
🕞 WGS8	4(ITRF2014)

Figure 143 – Created coordinate system

8.2 New coordinate system

Click button on the toolbar to create a new coordinate system or select the folder where the new coordinate system will be created, right-click, and in the menus that open sequentially, select Add coordinate system and New buttons:

Scoordinate systems	manager					
9 🕂 😫 🧐						
Favorites Default						Proj
New folder SK-42	New folder	Shift+Ctrl+N	008	'Farth)	4	
NAD83(2) 🗄	Add coordina	ate system 🔹 🕨	£.	GeoData	Ctrl	+G
SK-42 / G	Rename	F2	D	New	Ctrl	۴N
~	Cut	Ctrl+X		Local Datur		
Ø	Сору	Ctrl+C	IT .	Default		
a	Paste	Ctrl+V				
	Delete	Del				
8	Import	Ctrl+I				
	Export	Ctrl+E				

Figure 144 – Creation a coordinate system in a folder

to create a new coordinate system select a new coordinate system type geocentric, ellipsoidal or grid:

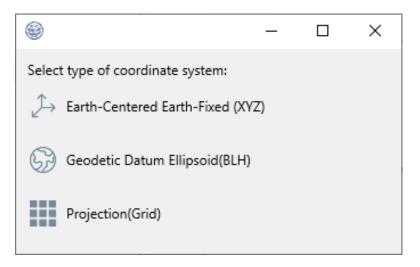


Figure 145 – Coordinate system type

Consider the creation of a grid coordinate system, since this case includes all others.

Projection(Grid)

then select a datum from the list

or create a new one, if necessary:

To do this, select the option

۲	_		Х
Create new o	or select datum:		~
	Back	Next	t

Figure 146 – Datum Selection/Creation

Datum parameters correspond to the transformation from ITRF2008(WGS84), which is the main coordinate system in *PGO*.

8.3 New datum

To create a new datum select ellipsoid in the drop-down menu or type the ellipsoid parameters manually:

	_		×
Select ellipsoid or WGS 84	r enter p	arameters	:
Semi-major axis	63781	37,000	m
InverseFlattening	298,25	7223563	m
Bac	:k	Next	:

Figure 147 – Datum Selection/Creation

then type 7 Helmert transformation parameters:

6		—		\times
WGS84 to targe	t coordi	nate sy	/stem	
Helmert Tran	sformati	ion (7-	param. lii	near)
X-axis translati	ion			_
0,000				m
Y-axis translati	ion			
0,000				m
Z-axis translati	ion			_
0,000				m
X-axis rotation	1			
0° 00' 00,0000	0"			
Y-axis rotation	1			
0° 00' 00,0000	0"			
Z-axis rotation	l			
0° 00' 00,0000	0"			
Scale difference	e			
0,000				ppm
	Back		Nex	t

Figure 148 – 7 Helmert parameters

Then select the required geoid model or skip this step:

6	—		\times
Select a geoid or select a geoid file	or skip:		
EGM2008 (Earth)			~
Base on WGS84 O Current			
File EGM2008 (Earth)			₿
Skip Ba	ck	Next	

Figure 149 – Geoid model selection

Select projection type in the drop-down list:

		_		\times
Select projec	tion:			
Transverse Mercator				
	Back		Nex	ĸt

Figure 150 – Projection type selection

And type projection parameters:

۲		_		\times
Transver	se Mercato	or		
Latitude o	of Origin			
N 0° 00' (00,00000"			
Central M	leridian			
E 0° 00' 0	0,00000"			
Scale Fact	tor			
0,000000)			
False East	ting			
0,000				m
False Nor	thing			
0,000				m
Prime me	ridian			
E 0° 00' 0	0,00000"			
	Back		Nex	ct

Figure 151 – Projection parameters

then type the name of the coordinate system to be created.

۲		_		×
Name	New coordinate syste	em		
	[Back	Add	

Figure 152 – New coordinate system name

and click *Add*. The coordinate system will be created and its name will be added to the *Favorites* node in the corresponding folder:

4 📗	Favorites
►	🕼 Default
-	🕼 New folder
	New coordinate system
	SK-42 / MSK-01 zn. 2 Resp. Adygeya / EGM2008 (Earth)

Figure 153 – Created coordinate system

8.4 Select existing datum

To select an existing datum copy it to the Favorites node as follows:

Click 🕒 , se	elect GeoMetric Ctrl+G , type datum nar	ne and cl	ick Ent	er:
	le GeoMetric	_		×
	Search by Name ~ ED50		Q	\otimes
	 I Continents I Global 			
	Custom transformation			
	Geoid Add		Cance	:

Figure 154 – Datum name

The window that opens will display a list of coordinate systems that reference this datum:

leoMetric			_		×
Search by Name 🗸 ED50				Q	\otimes
ED50 / UTM zone 37N - 36-42° E					^
ED50 / UTM zone 38N - 42-48° E					
ED50(ED77) / UTM zone 38N - W of 4	48° E				
ED50(ED77) / UTM zone 39N - 48-54	l° E				
ED50(ED77) / UTM zone 40N - 54-60)° E				
ED50(ED77) / UTM zone 41N - E of 60° E					
699 ED50					
6 ED50(ED77)					
💮 ED50(Turkey)					
, ² → ED50					
^Ĵ → ED50(ED77)					~
Custom transformation					
	Geoid	Add		Cance	2

Figure 155 – Datum selection

In this window select a coordinate system with the appropriate name, which is a datum (it is

indicated by the icon \bigcirc) and click *Add*. The datum will be added to the *Favorites* node.

The added datum will be available when creating a new coordinate system when using the datum selection mode from the list:

Select		x
🔺 🚛 Favorites		
🔺 🚺 Default		
69 WGS84		
🕼 New folder		
G Amersfoort		
60 ED50		
3 WGS84(ITRF2014)		
	Ok Cancel	

Figure 156 – Datum selection

Select the required datum from the list and click OK.

8.5 Coordinate system options

To access coordinate system options select the coordinate system and click the right mouse button:

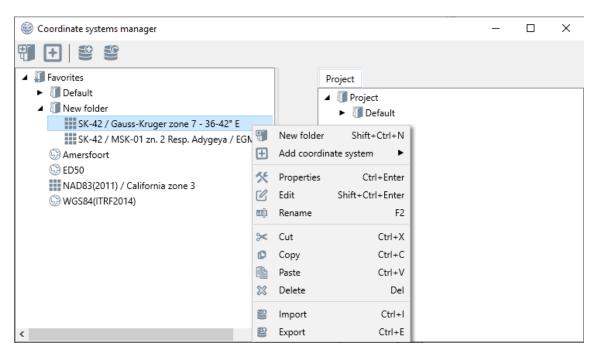


Figure 157 – Coordinate system options

Properties

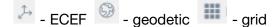
To get full information about the coordinate system click Properties:

Helmert Transformation (7-param. linear)	Transverse Mercator	GEOID_ADAPTER_COMMON
(-axis translation	Latitude of Origin	Geoid model file
23,570 m	N 0° 00' 00,00000"	egm2008.db3
/-axis translation	Central Meridian	PAR_BASE_ON
-140,950 m	E 40° 58' 60,00000"	WGS84
Z-axis translation	Scale Factor	
-79,800 m	1,000000	G Forward
(-axis rotation	False Easting	
D° 00' 00,00000"	2300000,000 m	1
/-axis rotation	Flattening	
-0° 00' 00,35000"	298,30000000	
Z-axis rotation	Prime meridian	
-0° 00' 00,79000"	E 0° 00' 00,00000"	
Scale difference	False Northing	
-0,220 ppm	-4511057,628 m	1
Semi-major axis (source)	Semi-major axis	
5378245,000 m	6378245,000 m	1
Gemi-major axis (target)		
5378137,000 m	💮 — 🏭 Forward	
lattening (source)		
298,30000000		
lattening (target)		
298,257223563		
Prime meridian (source)		
E 0° 00' 00,00000"		
Prime meridian (target)		
E 0° 00' 00,00000"		

Figure 158 – Coordinate system properties

Edit

Click this option for editing. In fact, every complete coordinate transformation from WGS84(ITRF2008) to target coordinate system is chain of consecutive transformations. It causes following form to edit transformation:


Figure 159 – Edit window

Status bar:

ä	save transformation
đ	save transformation under new name
+	add transformation
*	insert transformation
*	delete transformation

Far left panel designed for input/output coordinates in WGS84(ITRF2008). Far right panel designed for input/ output coordinates in target coordinates system. Each panel in middle represents consecutive transformation. These middle panels are highlighted by green or red colors depending on correct/wrong link between output data previous transformation and input data current transformation.

Validation between transformations is detected by coincidence types of in/out data. Check type using icons on the bottom bar:

Combined icon is means variant types of coordinates.

Transformation types could be forward and backward and indicated by color of icon and signature. Selected transformation is highlighted by blue frame.

Next transformations can be added or inserted:

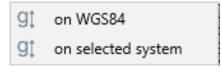

2÷	MDL_GEODETIC	
67	Helmert Transformation (7-param. linear)	
	Projections	۲
gţ	Geoid	•
G	Localizations	۲

Figure 160 – Transformation types

Allowed projection list, geoid model types and localization types:

 Transverse Mercator
 Transverse Mercator (South Orientated)
 Mercator (1SP)
Oblique Mercator (Hotine Variant B)
Oblique Mercator (Hotine Variant A)
 Oblique Mercator (2 points)
Oblique Stereographic
Polar Stereographic (Variant A)
Stereographic Double
 Cassini-Soldner
 Lambert Conformal Conic 1SP
 Lambert Conformal Conic 2SP
 Lambert Conformal Conic (West Orientated)

Figure 161 – Projection list

Figure 162 – Geoid model types

ŵ	Grid plane and vertical localization
ŵ	Grid plane localization
G	Vertical Offset

Figure 163 – Localization types

After selecting the option *on the selected system* select the panel that will be used to determine the geoid height and then click the *Accept* button. A panel will be added in the *Editing Coordinate*

System window, in which select a geoid file by clicking . Icon serves to obtain information about the reference coordinate system for the selected geoid file. The new geoid file will be copied to the geoid folder of the PGO program. When a conversion is valid, the panel frame is colored

green. Only coordinate systems with valid transformations can be saved. Should be pressed

to save transformation or to save transformation under a new name. The transformation name must be unique. When saving an existing coordinate system under a new name, enter it in the Name line:

Select
 Favorites Default World Mercator New folder New coordinate system
SK-42 / Gauss-Kruger zone 7 - 36-42° E
SK-42 / MSK-01 zn. 2 Resp. Adygeya / EGM2008 (Earth) NAD83(2011) / California zone 3
Name New name Ok Cancel

Figure 164 – New name

Rename

Click an option Rename for input and edit the name:

🔺 🚛 Favorites
🔺 🚺 Default
59 WGS84
2 → WGS84(ECEF)
World Mercator
GS-63 St. Petersburg Region / Z4 10/3/2024 1:27:49 PM
MKEA

Figure 165 – Rename

Cut	an option for cut and paste
Сору	an option for pasting from buffer
Paste	deletes the item after confirmation

Delete	deletes an object after confirmation
Import	opens standard Save window. Exchange format is <i>PCS</i>
Export	opens standard window for export selected coordinate system as PCS file

8.6 Coordinate systems backup

Creat

The option is used to create a backup copy of the Favorites item. This helps when installing a new version of the software or running the software on several PC and is implemented by clicking the

(to create a backup file copy named Param_Year-Month-DayTHours_Minutes_SecondsZ.pcs icon in the folder C:\Users\UserName\Documents\ProGeoOffice\CoordinateSystems).

Param_AutoGenBackUp	
Param.pcs	
Delete	۲
Param_2024-03-27T17_54_37.360Z.pcs	
Param_2024-03-27T17_54_40.960Z.pcs	

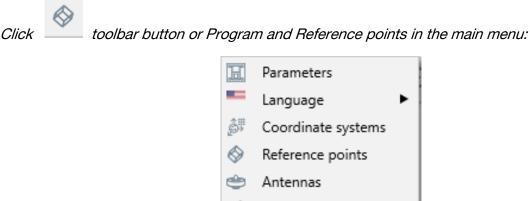
Figure 166 – List of backup files

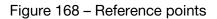
Exchange of coordinates systems

Use right pane of *Coordinate systems manager* for coordinate systems exchange:

left Coordinate systems manager			_		×
 Favorites Default New folder New coordinate system SK-42 / Gauss-Kruger zone 7 - 36-42° E SK-42 / MSK-01 zn. 2 Resp. Adygeya / EGM2008 Amersfoort ED50 NAD83(2011) / California zone 3 WGS84(ITRF2014) 	4 4	Project Project Default WGS84 WGS84(ECEF) World Mercator NAD83(2011) / Californ SK-42 / Gauss-Kruger z		°E	
< >					

Figure 167 – Coordinate systems exchange


Use



buttons to copy coordinate systems from program database to a project and vice versa. This makes it convenient to store frequently used coordinate systems and quickly and conveniently exchange coordinate systems between projects.

CHAPTER 9. REFERENCE POINTS

Reference points are point objects which represents a catalog of postulated coordinates. Raw data post-processing deals vector components in XYZ. To get shooting point position in some coordinate system we need first of all at least one reference point in this coordinate system. Set base receiver above reference point, set rover receiver above survey point in the field. Getting raw data from both, snap the beginning of processed vector to reference point and adjust. After post-processing and network adjustment, the coordinates of network points are obtained in the coordinate system of reference/origin points.

Cameras

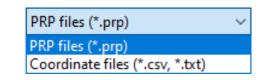
to open Reference points manager window:

Reference points manager		- 🗆 ×
1 😳 😫 🖤		
 Favorites Final BALB DMDV LAVH NGNK NRFM RAMN SFRN SHEH VORN ZLNG 	小	Edit Project Name BALB XVZ ↓ WGS84(ECEF) ✓ ↓ Q Sigma Type Plane and vertical ✓ X 0,0000 m Y 0,0000 m Z 0,0000 m
⊗ AntA1		Main Velocity Save Cancel
ОК		Cancel

Figure 169 – Reference points manager

Toolbar items:

er V	create a new folder in the Favorites node
₿	create a new reference point
	create a backup file
<u>8</u>	restore backup file


9.1 Left panel

The root element is the *Favorites* folder, which can contain several subfolders. To access the object menu, select an object (node, folder or item name) and click the right mouse button:

🔺 🚛 Favorites		
🔺 🗍 Final		
🔗 в, 🖤	New folder	Shift+Ctrl+N
🗞 D 🛞	New reference poi	nt Ctrl+N
🛇 L/ 📷	Rename	F2
🛇 N 🧮	- tertainte	
🗞 N 🔀	Cut	Ctrl+X
🛇 R. 👩	Сору	Ctrl+C
SI 🗈	Paste	Ctrl+V
SI 🔛	Delete	Del
🛇 VI 🔗	Delete	Dei
🛇 ZI 😫	Import	Ctrl+I
🛇 AntA' 😰	Export	Ctrl+E

Figure 170 – Menu for left panels objects

New folder	create a new folder	
New reference point	create a new reference point	
Rename	rename a reference point	
Cut	cut out an object	
Сору	copy an object	
Paste	paste copied or cut	
Delete	delete an object	
Import	import of reference points from files prp, csv, txt formats:	

Export export of reference points to files prp, csv, txt formats

When importing/exporting from files csv and txt formats, select the coordinate system in the list presented in the Favorites node of the coordinate system editor, since the name of the coordinate system is not saved in files of these formats, and select or create an input/output template.

9.2 Right panel

The panel contains two tabs:

- Edit ввод, обновление свойств опорного пункта
- Project repository of programs and projects for exchanging reference points

Edit

Edit	Project			
Name [BALB			
XYZ				
х	2928242,52	80		m
Y	2179312,92	64		m
z	5213053,07	'91		m
EPOCH	0,0000			
Ç→ WG	S84(ECEF)		~ +	Q
Sigma		Туре	Plane and vertical	~
X 0,00	00	m		
Y 0,00	00	m		
Z 0,00	00	m		
Main	Velocity			
	,			
		Save	Cancel	

Figure 171 – Edit tab

The panel is active only when the item in the left panel is selected. In the drop-down list select a coordinate system for the coordinates of the point:

SK-42 / MSK-02 zn. 2 Resp. Bashkortostar 🗸
\downarrow WGS84(ECEF)
SK-42 / MSK-02 zn. 2 Resp. Bashkortostan / I
SK-42 / MSK-01 zn. 2 Resp. Adygeya / EGM2
SK-42 / Gauss-Kruger zone 7 - 36-42° E
NAD83(2011) / California zone 3

Figure 172 – Coordinate system selection

Click 🕒 to add coordinate system from *Favorities* node of *Coordinate Systema Manager* to the coordinate systems list, click 🔍 to get coordinate system properties:

🎯 SK-42 / MSK-02 zn. 2 Resp. Bashkortostan / E	GM2008 (Earth)	– 🗆 X
 SK-42 / MSK-02 zn. 2 Resp. Bashkortostan / E Helmert Transformation (7-param. linear) X-axis translation 23,570 m Y-axis translation -140,950 m Z-axis translation -79,800 m X-axis rotation 0° 00' 00,0000" Y-axis rotation -0° 00' 00,35000" Z-axis rotation 	GM2008 (Earth) Transverse Mercator Latitude of Origin N 0° 00' 00,00000" Central Meridian E 58° 01' 60,00000" Scale Factor 1,000000 False Easting 230000,000 m Flattening 298,30000000 Prime meridian	- C ×
Z-axis rotation [-0° 00' 00,79000" Scale difference [-0,220 ppm Semi-major axis (source) [6378245,000 m Semi-major axis (target) [6378137,000 m Flattening (source) [298,300000000	Prime meridian E 0° 00' 00,000000" False Northing -5409414,700 m Semi-major axis 6378245,000 m	
Flattening (target) 298,257223563 Prime meridian (source) E 0° 00' 00,00000" Prime meridian (target) E 0° 00' 00,00000" Some meridian (target) E 0° 00' 00,00000" Backward		

Figure 173 – Coordinate system properties

If necessary, it is also possible to enter the epoch value for coordinates and coordinates velocities. Time-dependent coordinate systems use predefined rates (e.g. HTTP conversion). In this case type the velocities values:

EPOCH 0,0	000					
📰 SK-42 / MSK-02 zn. 2 Resp. Bashkortostar 🗸 于 📿						
Velocity						
N 0,0000	m/year					
E 0,0000	m/year					
U 0,0000	m/year					
Main Ve	locity					

Figure 174 – Epoch and velocities

9.3 Project

Reference points manager Image: Im					-		×
 Favorites Final BALB DMDV LAVH NGNK NRFM RAMN SFRN SHEH VORN ZLNG AntA1 	↓ ↓	Edit	Project Project Project NGNK NRFM RAMN SFRN				
OK Cancel							

Figure 175 – Exchange reference points

The Project tab is intended to exchange entire folders and individual reference points between the

program and project databases. Buttons	\Diamond	and	⇔	are used to copy folders and items
program and project databases. Duttons		anu		are used to copy folders and items.

CHAPTER 10. LOCALIZATION

To convert the coordinates obtained by the satellite data (GNSS) processing from WGS-84 to a local coordinate system, it is important to have:

• Reference coordinates in local coordinate system.

• Coordinate transformations which connect this coordinate system with WGS-84.

The order, in which coordinates are calculated, is shown on the following chart:

Figure 176 – Transformation steps

Transformation of geocentric coordinate systems is performed by the formula of 7 parametric Helmert transforms (Amendment 2 to RTCM STANDARD 10403.1):

$$\begin{bmatrix} X_T \\ Y_T \\ Z_T \end{bmatrix} = \begin{bmatrix} dX \\ dY \\ dZ \end{bmatrix} + M \times R \times \begin{bmatrix} X_S \\ Y_S \\ Z_S \end{bmatrix}$$
(10.1)

where (X_S , Y_S , Z_S) and (X_T , Y_T , Z_T) are WGS-84 geocentric coordinates and reference coordinate system accordingly (S - Source, T - Target)

dX, dY, dZ are translations along the axes (X, Y, Z)

M is the scale factor, $M = (1 + dS \times 10^{-6})$.

The size of *dS* is indicated in the list of datum Justin parameters in ppm, which means parts per millionths ($1 \text{ ppm} = 1 \times 10^{-6}$).

In rotation matrix $R = R_x \times R_y \times R_z$, where

$$R_{X} = \begin{bmatrix} \cos R_{1} & \sin R_{1} & 0 \\ -\sin R_{1} & \cos R_{1} & 0 \\ 0 & 0 & 1 \end{bmatrix}; R_{Y} = \begin{bmatrix} \cos R_{2} & 0 & -\sin R_{2} \\ 0 & 1 & 0 \\ \sin R_{2} & 0 & \cos R_{2} \end{bmatrix}; R_{Z} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos R_{3} & \sin R_{3} \\ 0 & -\sin R_{3} & \cos R_{3} \end{bmatrix}$$
(10.2)

where R_1, R_2, R_3 are angles between axes of source and target coordinate systems. Axes are counted in the clockwise direction.

The formula of inverse transformation:

$$\begin{bmatrix} X_S \\ Y_S \\ Z_S \end{bmatrix} = \frac{R^{-1}}{M} \begin{bmatrix} X_T \\ Y_T \\ Z_T \end{bmatrix} - \begin{bmatrix} dX \\ dY \\ dZ \end{bmatrix}$$
(10.3)

The Helmert transformation is a similarity transform in which the scale factor is the same for each coordinate. Combination of 7 parameters for transformation (dX, dY, dZ, dS, R_1 , R_2 , R_3) and ellipsoid is called datum. In the list of Justin datums the signs of parameters correspond to the transition from WGS-84 to the reference system.

Example. *d*X = +10 метров. *XR* = *XWGS* 84 + 10.

Calculation of geodetic coordinates (B - latitude, L - longitude, H - height) with the use of geocentric coordinates (item 2 of the transformation scheme) is performed by iterations using the formulas:

$$\tan L = \frac{Y}{X} \dots \ \tan B = \frac{Z}{\sqrt{X^2 + Y^2}} + \frac{e^2 \times N \times \sin B}{\sqrt{X^2 + Y^2}} \dots \dots H = \frac{\sqrt{X^2 + Y^2}}{\cos B} - N$$
(10.4)

where

N is the radius of curvature of the first vertical;

 e^2 is the square of the first eccentricity of the ellipsoid.

The reverse transition to rectangular coordinates *X*, *Y*, *Z* from geodetic coordinates (stage 2 of the transformation scheme) *B*, *L*, *H* is described by the formulas:

$$X = (N + H) \times \cos B \times \cos L$$

$$L = (N + H) \times \cos B \times \sin L$$

$$Z = (N + H - e^{2} \times N) \times \sin B$$
(10.5)

where

e is eccentricity;

N is the radius of curvature of the first vertical.

To calculate geodetic coordinates, there is need to specify an ellipsoid – semi-major axis and eccentricity.

The transformation of geodetic coordinates B, L into rectangular coordinates on a plane is performed based on the type and parameters of the map projection. The transition from H_{geod} , geodetic (ellipsoidal) height, which is measured along the normal to the ellipsoid, to H_{ortho} orthometric height is performed by the formula:

$$Hgeod = H$$
ortho + ζ (10.6)

where ζ is the height of the geoid above the ellipsoid.

Geoid heights are determined from geodetic coordinates based on a geoid model that is defined relative to the same ellipsoid for which the geodetic height is calculated.

Stage 4 of the transformation scheme is performed between two rectangular coordinate systems specified on the plane. Finding the parameters of such a transformation in geodesy is usually called localization or calibration.

Planned transformation formulas are similar to (10.1):

$$\begin{bmatrix} N_T \\ E_T \end{bmatrix} = \begin{bmatrix} dN \\ dE \end{bmatrix} + M \times R \times \begin{bmatrix} N_S \\ E_S \end{bmatrix}$$
(10.7)

where

$$R = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

The formulas are:

$$N_T = dN + M \times (N_S \times \cos \alpha - E_S \times \sin \alpha)$$

$$E_T = dE + M \times (N_S \times \sin \alpha + E_S \times \cos \alpha)$$
(10.8)

where *dN*, *dE* are offsets along the coordinate axes.;

 N_{S} , E_{S} , N_{T} , E_{T} are Northing and Easting rectangular coordinates on a plane;

a is the turning angle, counted clockwise;

M is the scale factor.

The formula for inverse transformation for coordinates on a plane:

$$\begin{bmatrix} N_S \\ E_S \end{bmatrix} = \frac{R^{-1}}{M} \begin{bmatrix} N_T \\ E_T \end{bmatrix} - \begin{bmatrix} dN \\ dE \end{bmatrix}$$
 (10.9)

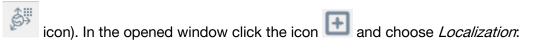
The formula of altitude transformation:

$$H_T = H_S + dH + \alpha_N \times N_S + \alpha_E \times E_S \tag{10.10}$$

where H_S is height in the original coordinate system,

dH is height increment,

 a_{N} , a_{E} are slope angles along the Northing, Easting axes.


The determination of the transformation parameters of coordinate systems on the plane is performed by the ordinary least mean squares method (LMS) by comparing the resulting transformation chain 1 - 4 and the original (from the catalog) coordinates of the points.

The parameters of the horizontal and vertical transformation are calculated independently. The minimum number of points required for calculation is two points for plane localization and three points for vertical localization.

Local datum includes 4 parameters of plane transformation plus 3 parameters of vertical transformation. Sometimes, this set of parameters is called 4+3 datum. This highlights the difference between it and datum with 7 parameters, which is used for calculation of geocentric coordinates transformations.

The calculation of the transformation parameters of rectangular coordinate systems on a plane and vertical coordinate systems is performed in the Localization window.

To activate this window, select the main menu item Program, then Coordinate systems (or click the

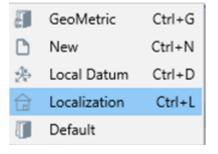


Figure 177 – Localization

The main elements of the *Localization* window are the bar of icons, the settings panel and the coordinate entry table:

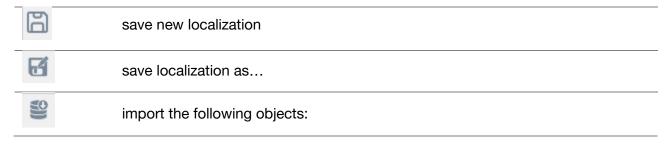

Localization	n								-		Х
861	9 9 ×	σ (۞	+								
Network coord	inate system B	LH 🗸 🗋	± %	Transformation	type Plane	✓ Confider	ice level 99%	~			
Select projectio	on: Oblique Ste	reographic `] Adjust Central N	Meridian Interval 0° (0' 10,00000"					
					Network		Reference		Residua	als	
RecNo	Enable	Туре	Name	Latitude	Longitude	North, m	East, m	X, m	Y, m	EV	
1	\checkmark	\$	Point								
2		\$	Point 1								
3	\checkmark	\$	Point 2								
4	\checkmark	\$	Point 3								
5		\$	Point 4								
<											

Figure 178 – Localization window

10.1 Icon bar

The bar of icons functionally corresponds to all localization commands:

Import - import coordinate files (csv, txt) and saved localizations (pl):

Coordinate files (*.csv, *.txt)	~
Coordinate files (*.csv, *.txt)	
PL files (*.pl)	

Sites - import point coordinates for any point type from the current project:

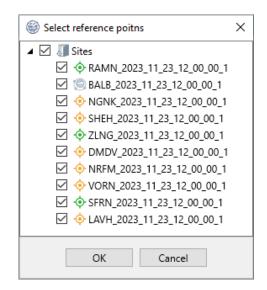


Figure 180 – Import site coordinates

Reference points - import reference points coordinates

	export of coordinate files (csv,txt) and localizations files (PL)
*	activate / deactivate a bookmark, which contains a list of calculated parameters of horizontal and vertical transformations
σ	add columns to enter estimates of the accuracy of the coordinates of points
{	perform localization calculation
+	add a new row to the end of the table
	add a new row to the table before the selected one
	remove selected row from table
≈	delete all rows in table

lect import template						×
Template	Columns	Name	Latitude,°	Latitude,'	Latitude,"	Longitu
1	Column Value	1516	56	10	34.24673	40
3	0 Name	2168	56	7	9.979511	40
5	1 Latitude,°	2191	56	10	22.021424	40
4	2 Latitude,'	2810	56	6	14.88016	40
	3 Latitude,"	9305	56	7	25.818161	40
	4 Longitude,°	3274	56	7	2.600667	40
	5 Longitude,' 🗸	3913	56	10	26.505627	40
	< >	4316	56	11	1.692219	40
🗄 Add 🛛 🐹 Delete	🗄 Add 🛛 🔄 Insert 🛛 🗱 Delete	4741	56	10	31.675102	40
	Tab Decimal Separator					
Encoding UTF8 V		<				>
	ОК	Cancel				

Select from a list or create an input template when importing coordinate file:

Figure 181 – Template for coordinates importing

To save the localization in the program database click or and select or create a new

folder in the Favorites node of the Coordinate System Editor.

Select	x
🔺 🚛 Favorites	
🕼 Default	
🔺 🕕 New folder	
🔓 Local-1	
Name Local-1	Ok Cancel

Figure 182 - Save localization

The localization file stores not only the conversion parameters, but also all table data, including if no processing was performed and the parameters were not received.

10.2 Main window

Data table

The data table is used to display the coordinates of points and to estimate the accuracy of the transformation calculation. Accuracy estimation is based on residuals. It depends both on the coordinate quality of the satellite network points and the mutual consistency of the reference points, and on the reliability of the user-specified projection parameters of the local coordinate system of the *Reference*. The columns of the table are combined into blocks - *Network, Reference, Residuals*. The *Network* block contains coordinates of points in the selected coordinate system. As a rule, these are the coordinates of points obtained from adjusting of the free GNSS network. *Reference*

block - coordinates of points in the local rectangular coordinate system on the plane. The residuals obtained from adjustment are shown in the right part of the table:

Scalization	1								_		<
Β.δ. ≌. ≌ 火 σ ⑫ ➡ 國 □ ※											
Network coordinate system 🛛 BLH 🗸 🗋 🛃 🎌 Transformation type 🛛 Plane 🗸 Confidence level 99% 🗸											
Select projectio	n: Oblique Ster	eographic 🗸] Adjust Central Meridia	an Interval 0° 00' 10	,00000"					
				Net	work	Ref	ference		Residuals		
RecNo	Enable	Туре	Name	Latitude	Longitude	North, m	East, m	X, m	Y, m	EV	
1	\checkmark	\$	1516	N 56° 10' 34,24673"	E 40° 29' 56,45884"	196784,7730	227246,9860	-0,7629	-1,4947	1,6782	

Figure 183 – Table blocks

In the input window, each line contains information about one item and contains the following columns:

RecNo	line number in order
Enable	the selected check-box means that the coordinates of the point will be used when calculating the parameters. Otherwise, the point is excluded from the calculation process. In this case, the corresponding row in the table is shaded, residuals are not calculated.
Туре	sets the type of transformations in which a specific item can be used:

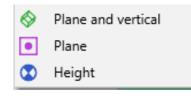


Figure 184 – Transformation types

It is possible to set one of three types of typing to control points:

- Plane and vertical. The coordinates of the points will be used to calculate the parameters for the horizontal transformation (Latitude / Longitude or North / East) and the vertical transformation (Height)
- Plane. The coordinates of the points will be used to calculate the parameters for the horizontal transformation (Latitude / Longitude or North / East)
- Height. The coordinates of the points will be used to calculate the parameters of the vertical transformation (Height) (Высота).

Name	item name
Latitude, Longitude, (Height - if	coordinates of points in the reference coordinate system.
parameters for vertical	Depending on the type of coordinates which were entered
transformation are also	into these columns (ellipsoidal or rectangular on a plane),
calculated) from the Network	there may be options BLH or North / East)
block	

North,	East,	(Height	- if	from the Reference block - coordinates of points in the local
paramete	ers	for	height	coordinate system
transform	nation	are	also	
calculate	ed)			
X(м) Y(м block	ı) Z(м)	EV in Re	esiduals	residuals of points of the coordinates by the corresponding component and residuals by radius vector

10.3 Working with input fields in a table

For greater clarity and convenience of work, the table uses color highlighting of fields. The coordinate columns of points in the original coordinate system are highlighted in green. The fields of the residual columns (except for the V column) are highlighted in red before the parameters are calculated. After calculating the parameters, the fields of these columns can be marked in green if the corresponding corrections to the measurements meet the criteria for the τ -test (tau test), or in red if the test is not passed. During the τ -test, the correspondence of corrections to the coordinates of points to the estimate of their accuracy obtained from the adjustment is analyzed. Therefore, sometimes, even relatively small corrections can be marked as not passed the τ-test. In addition to the τ -test, it is important to pay attention to the magnitude of the residuals, while evaluating the results of localization. If the item is excluded from the calculations (the check-box in the Enable column is unchecked), the color of the corresponding line changes to pale green. Fields for the value of the corresponding residuals will be empty and will be highlighted in white. To edit the type, names, coordinates of points directly in the table, double-click the corresponding field with the left mouse button. To save the editor in the text information input columns, press Enter, or by pressing the left mouse button, move the cursor from the edited field. Empty fields in the *Height* column are not highlighted in another color. The height value for this item will not be considered when calculating the altitude transformation parameters. The corresponding field in the residual columns is highlighted in the line by white color:

Localization												_	- 🗆	>
861	8 X	σ ෯	+											
Network coordin	Vetwork coordinate system 🛛 BLH 🗸 🗅 🛨 🛠 Transformation type Plane and vertical 🗸 Confidence level 99% 🗸													
Select projection: Oblique Stereographic 🗸 📝 🗋 Adjust Central Meridian Interval 0° 00' 10,00000"														
					Network		Reference			Residuals				T
RecNo	Enable	Туре	Name	Latitude	Longitude	Height, m	North, m	East, m	Height, m	X, m	Y, m	Z, m	EV	
1	\checkmark	\$	1516	N 56° 10' 34,24673"	E 40° 29' 56,45884"	156,6018	196784,7730	227246,9860	46,7420	-0,7629	-1,4947	0,0026	1,6782	
2	\checkmark	۲	2168	N 56° 07' 09,97951"	E 40° 21' 55,81245"	183,8241	190295,4070	219080,6280		-0,7455	-0,6943		1,0187	
3		\$	2191	N 56° 10' 22,02142"	E 40° 24' 44,88099"	131,3607	196293,2460	221879,8550	21,5036	-0,2648	0,4474	0,0072	0,5199	
4		\$	2810	N 56° 06' 14,88016"	E 40° 26' 07,47931"	113,2061	188679,6640	223463,8840	3,3402	-0,5087	1,1767	-0,0014	1,2819	
5	\checkmark	\$	9305	N 56° 07' 25,81816"	E 40° 20' 31,59931"	151,2896	190756,6690	217616,2070	41,4294	-0,4104	-1,3700	0,0051	1,4301	
6		\$	3274	N 56° 07' 02,60067"	E 40° 30' 27,61103"	165,4656	190251,2770	227927,4280	55,6004	1,8309	0,6508	-0,0029	1,9432	
7		0	3913	N 56° 10' 26,50563"	E 40° 23' 20,76767"	184,0758	196402,4400	220425,9350	74,2039	0,1298	0,6677	-0,0073	0,6803	
8		۰	4316	N 56° 11' 01,69222"	E 40° 26' 56,77807"	185,3311	197567,3030	224129,5760		-1,0754	0,0447		1,0763	
9		I	4741	N 56° 10' 31,67510"	E 40° 19' 55,42575"	186,9969	196492,4220	216880,3480	77,1284	1,8069	0,5717	-0,0033	1,8952	

Figure 185 – Data in the Height column

When coordinates are entered in the table in the columns of the *Network* block and there is no value of any plane coordinate (deleted from the table by the operator, omitted in the imported file), then the input line is not taken into account in the calculation (sites 2810, 3913). The result will be similar to deleting item information from the table or unchecking the check-box in the *Enable* column). The residuals of the row will be zero, and their fields in the table are highlighted in white:

												_		
Localization												-		
865	* 😫	σ 💮	+											
Network coordinate system BLH 🗸 🗈 🕂 Transformation type Plane and vertical 🗸 Confidence level 99% 🗸														
Select projection: Oblique Stereographic V 🗹 🗋 Adjust Central Meridian Interval 0' 00' 10,00000"														
					Network		Reference				Residuals			
RecNo	Enable	Туре	Name	Latitude	Longitude	Height, m	North, m	East, m	Height, m	X, m	Y, m	Z, m	EV	
1	\checkmark	S	1516	N 56° 10' 34,24673"	E 40° 29' 56,45884"	156,6018	196784,7730	227246,9860	46,7420	-0,6632	-1,1919	0,0009	1,3640	
2	\checkmark	•	2168	N 56° 07' 09,97951"	E 40° 21' 55,81245"	183,8241	190295,4070	219080,6280		-0,9299	-0,4103		1,0164	
3	\checkmark	\$	2191	N 56° 10' 22,02142"	E 40° 24' 44,88099"	131,3607	196293,2460	221879,8550	21,5036	-0,2827	0,6616	0,0050	0,7194	
4	\checkmark	\$	2810	N 56° 06' 14,88016"		113,2061	188679,6640	223463,8840	3,3402					
5	\checkmark	\$	9305	N 56° 07' 25,81816"	E 40° 20' 31,59931"	151,2896	190756,6690	217616,2070	41,4294	-0,6159	-1,1221	0,0035	1,2800	
6	\checkmark	\$	3274	N 56° 07' 02,60067"	E 40° 30' 27,61103"	165,4656	190251,2770	227927,4280	55,6004	1,8243	1,0981	-0,0033	2,1293	
7	\checkmark	٨	3913		E 40° 23' 20,76767"	184,0758	196402,4400	220425,9350	74,2039					
8	\checkmark	•	4316	N 56° 11' 01,69222"	E 40° 26' 56,77807"	185,3311	197567,3030	224129,5760		-1,0244	0,2745		1,0605	
9		8	4741	N 56° 10' 31,67510"	E 40° 19' 55,42575"	186,9969	196492,4220	216880,3480	77,1284	1,6917	0,6902	-0,0061	1,8271	

Figure 186 – Missing data in the fields

When changing the type of a point, those coordinates that do not belong to this type are excluded from the calculations. The fields in the Residuals columns are highlighted in white. For example, site 4316 does not use elevation, and site 9305 does not use plane coordinates:

Localization												_	. 🗆	
8615	¥ ≌	σ (බු	+											
Network coordinate system 🛛 BLH 👻 🎦 🗄 🎋 Transformation type 🛛 Plane and vertical 🔍 Confidence level 99% 🗸														
Select projection	: Oblique Stere	eographic 🚿] Adjust Central Meridia	an Interval 0° 00' 10	.00000"								
					Network		Reference			Residuals				
RecNo	Enable	Туре	Name	Latitude	Longitude	Height, m	North, m	East, m	Height, m	X, m	Y, m	Z, m	EV	
1	\checkmark	\$	1516	N 56° 10' 34,24673"	E 40° 29' 56,45884"	156,6018	196784,7730	227246,9860	46,7420	-0,7608	-1,4387	0,0026	1,6274	
2	\checkmark	٠	2168	N 56° 07' 09,97951"	E 40° 21' 55,81245"	183,8241	190295,4070	219080,6280		-0,9102	-1,0622		1,3989	
3	\checkmark	\$	2191	N 56° 10' 22,02142"	E 40° 24' 44,88099"	131,3607	196293,2460	221879,8550	21,5036	-0,2147	0,2729	0,0072	0,3473	
4		\$	2810	N 56° 06' 14,88016"	E 40° 26' 07,47931"	113,2061	188679,6640	223463,8840	3,3402	-0,7969	0,9711	-0,0014	1,2562	
5	\checkmark		9305	N 56° 07' 25,81816"	E 40° 20' 31,59931"	151,2896	190756,6690	217616,2070	41,4294			0,0051	0,0051	
6		\$	3274	N 56° 07' 02,60067"	E 40° 30' 27,61103"	165,4656	190251,2770	227927,4280	55,6004	1,5513	0,6518	-0,0029	1,6827	
7		ا	3913	N 56° 10' 26,50563"	E 40° 23' 20,76767"	184,0758	196402,4400	220425,9350	74,2039	0,2030	0,4339	-0,0073	0,4791	
8		٠	4316	N 56° 11' 01,69222"	E 40° 26' 56,77807"	185,3311	197567,3030	224129,5760		-1,0008	-0,0195		1,0010	
9		\$	4741	N 56° 10' 31,67510"	E 40° 19' 55,42575"	186,9969	196492,4220	216880,3480	77,1284	1,9291	0,1908	-0,0033	1,9385	

Figure 187 – Transformation types

Similar rules apply to coordinate columns of the Reference block.

Fields in which coordinates are not entered (for all columns) remain empty, and the following fields of this item also remain empty:

Localization														;
8612	警	ේ හි												
	Vetwork coordinate system BLH 🗸 🗅 🗄 🋠 Transformation type Plane and vertical 🗸 Confidence level 99% 🗸													
Select projection: Oblique Stereographic 💙 📝 🗋 Adjust Central Meridian Interval 0° 00' 10,00000"														
					Network		Reference					duals		
RecNo	Enable	Type	Name	Latitude	Longitude	Height, m	North, m	East, m	Height, m	X, m	Y, m	Z, m	EV	
1		\$	1516	N 56° 10' 34,24673"	E 40° 29' 56,45884"	156,6018	196784,7730	227246,9860	46,7420	0,0294	-0,0377	0,0000	0,0478	
2		\$	2168											
3		\$	2191	N 56° 10' 22,02142"	E 40° 24' 44,88099"	131,3607	196293,2460	221879,8550	21,5036	-0,1594	0,1571	0,0000	0,2238	
4		\$	2810	N 56° 06' 14,88016"										
5		\$	9305	N 56° 07' 25,81816"	E 40° 20' 31,59931"	151,2896	190756,6690	217616,2070	41,4294					
6		\$	3274	N 56° 07' 02,60067"	E 40° 30' 27,61103"									
7		\$	3913	N 56° 10' 26,50563"	E 40° 23' 20,76767"	184,0758	196402,4400	220425,9350	74,2039	0,1301	-0,1194	0,0000	0,1766	
8		\$	4316	N 56° 11' 01,69222"	E 40° 26' 56,77807"	185,3311	197567,3030							
9		\	4741	N 56° 10' 31,67510"	E 40° 19' 55,42575"	186,9969	196492,4220	216880,3480	77,1284					

Figure 188 – Missing data

10.4 Localization window tabs

In addition to the coordinate table, a tab can be activated in the window, in which four parameters of the plane transformation (if calculated) and three parameters of the vertical transformation (if calculated) are displayed:

Grid plane and vertical localization
Northing offset
-3904159,771 m
Easting offset
-3819543,345 m
Rotation
20° 57' 42,85963"
Scale difference
-288772,339 ppm
Vertical Offset
136,181 m
North inclination
-0° 00' 08,66752"
East inclination
0° 00' 04,17251"
RMS 0,2044
[V2] 0,0835

Figure 189 – Transformation parameters

Also, the sum of the squares of the residuals (by the radius vector, the Input table section, the description of the Residuals column) and the mean square error.

10.5 Settings panel

The settings panel is designed to select various settings and parameters when calculating localization parameters:

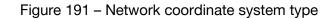

Network coordinate system 🛛 BLH 🗸 🗅 🛨 🛠	Transformation type	Plane and vertical $$	Confidence level	99% ~
Select projection: Oblique Stereographic 💙 🗹 🛛] Adjust Central Meridia	n Interval 0° 00' 10,0	0000"	

Figure 190 – Settings panel

10.6 Network coordinate system

The *Network coordinates* drop-down list is used to define the type of coordinate system for the coordinates that will be imported into the *Network* block:

Network coordinate system	BLH 🗸
	XYZ
	BLH

These can be ellipsoidal (BLH) coordinates (set by default), or rectangular coordinates on a plane (GRID). Depending on the selected type of coordinate system, the table view is configured, settings for the coordinate input template are selected (section Importing coordinates into a table).

Since the main purpose of the localization module is to tie the coordinates of global satellite navigation systems - WGS-84, obtained as a result of processing/post-processing by the *PGO* program - to ground points, then, mainly, the coordinates of the network essentially denote the coordinates of WGS-84. In this case, the BLH/Grid switch only affects the external representation of coordinates since the internal representation of the data in the *PGO* database is WGS-84.

The situation is different when importing grid coordinates from a file, in which coordinates can be specified in any form. Setting the switch allows you to correctly identify the original data, that is, convert it to the internal representation of the WGS-84 program. The list of coordinate systems offered for selection corresponds to the list available when choosing *Program-Coordinate systems* from the main PGO menu.

The reference coordinate system is characterized by a map projection and a global (spatial) 7parameter datum. The purpose of localization is to calculate the parameters of the local datum required for transformations of coordinates specified on the plane.

The local datum is used in the *PGO* program in addition to the global one, but its calculation may be of interest for use in independent coordinate transformation programs. The parameters of the map projection are not subject to calculation (except for the value of the axial meridian, for those projections where it is available).

The accuracy of the conversion to local coordinates depends on the accuracy of the initial definition of the coordinate system of the reference. The dependence of the accuracy of transformations on the parameters of the global datum is relatively small. In most cases, the main source of calculation errors is the inaccuracy of the choice of the central meridian. Distortions in the coordinates of the item increase with distance from it. Therefore, the parameters of the cartographic projection of a predefined coordinate system of the reference should be as accurate as possible correspond to the real, which are not always known. It is possible to recommend the selection of parameters and type of cartographic projection of the reference to achieve the best result.

If nothing is known about the type and parameters of the cartographic projection of the reference coordinate system, then in the drop-down list of coordinate systems you should select *Oblique Stereographic*, which is equivalent to choosing a stereographic projection with a central point calculated as the average between their maximum and minimum values of latitudes and longitudes for points of the *Network* block, zero shifts along the axes and unit scale.

10.7 Transformation type

The Transformation drop-down list is used to define a set of calculated parameters: Plane (set by default) - 4 parameters:

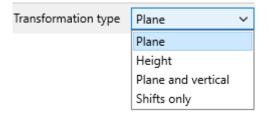


Figure 192 – Transformation type

of the horizontal transformation are calculated, *Height* - three parameters of the vertical transformation, *Plane* + *Height* - four parameters of the horizontal and three parameters of the vertical transformation, *Offsets* only - 2 parameters of the horizontal transformation (shifts along the *North* and *East* axes). In this case, the roll angle is 0, the scale is 1.

10.8 Auto select central meridian

The *Autoselect CM* check-box is designed to select the central meridian when calculating transformation parameters:

🗹 Adjust Central Meridian

Figure 193 – The Autoselect CM check-box

If the check-box is not selected, the coordinates of the grid points are converted to the reference coordinate system using the preset value of the central meridian, specified by the map projection in the projection list of coordinate systems. If the check-box is checked, the meridian is automatically selected for the six-degree zone with the boundaries shifted by 3 degrees to the left and right relative to the average longitude of the points of the *Network* block. The calculation is performed in a cycle with a longitude step equal to the entered value in the *Interval* window (the preset step value is 10 seconds). The criterion is the estimate of the sum of the squares of the residuals. The value of this sum is reflected in line *[V2]* of the tab with the list of calculated parameters. The value of the central meridian, for which the transformation parameters were

obtained, can be viewed by clicking the button on the settings panel:

		x
— Oblique Stereograp	hic	
Latitude of Origin		
N 0° 00' 00,00000"		
Central Meridian		
E 0° 00' 00,00000"		
False Northing		
0,000	m	
False Easting	-	
0,000	m	
Scale Factor	-	
1,000000		
Prime meridian		
E 0° 00' 00,00000"		
-		

Figure 194 – Plane system parameters for translation into the reference coordinate system

The values of these parameters are updated after each calculation of localization with the *Auto-select CM* check-box checked or at any time can be changed manually in this window. If the *Autoselect CM* check-box is not selected, the values of these parameters are entered only manually and do not change during the calculation. In the course of calculations, the longitude step, the value of the current central meridian for which the calculations are being performed, the value of the central meridian for which the best estimate of the localization accuracy has been obtained at the moment and the sum of the residual squares are displayed in the *Progress* window with a progress bar with the *Auto-select CM* check-box selected:

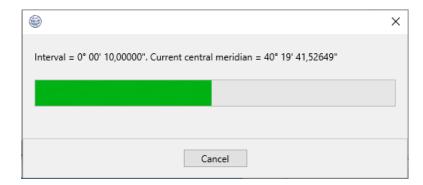


Figure 195 – Progress window

10.9 Progress window

Confidence intervals are set to searching blunders with τ -test:

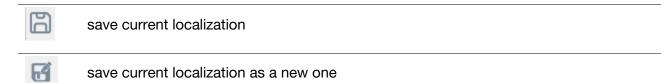
Confidence level	99% ~
	99%
	95%
	67%

Figure 196 – Choosing a Confidence level

The 95% confidence level corresponds to a narrower confidence interval, that is, the criterion for passing the test will be more stringent. 99% confidence level corresponds more wide error interval.

10.10 Import/export of point coordinates

To import point coordinates, click even on the icon bar of the Localization window.


Import is carried out through a standard dialog from text files of arbitrary format with the extension csv, txt and files previously saved using a template with the extension PL.

To export point coordinates click Export is carried out in files of the same formats as import. When importing/exporting files of arbitrary format, you should create a coordinate input/output template. The difference between the template creation windows for import and export is that during import, the template creation window has an additional panel that shows the contents of the imported file, during export this panel is absent.

After creating a template and clicking *OK*, the coordinates of the points will be imported into the table in accordance with the created template. The set of template fields depends on the type of imported or exported coordinates (XYZ/BLH/Grid). When importing/exporting files with the PL extension created using a standard template, creating or selecting a template is not required.

10.11 Save localization

To save the localization click:

To avoid data loss select a unique name for the new saved localization. The saved localization file contains not only the transformation parameters, but also a table of coordinates from which these parameters were obtained. Save a coordinate table in a localization file without calculating transformation parameters. In this case, all parameters in the file will be equal to zero. All localizations are stored in the *Favorites* node of the *Coordinate Systems Manager*.

CHAPTER 11. ANTENNA EDITOR

toolbar button or Program and Antennas in the main menu:

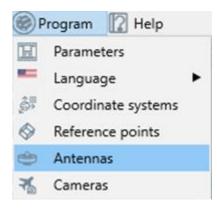


Figure 197 – Antennas item

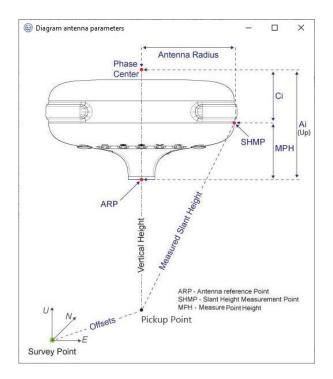
to open Antennas window:

Antennas																_		×
+ □ 4 ≈ 2 2 0 0	🗄 🕂 d	〕 膾 ☆																
Search by	Model	JAVTRIUMPH_1M NONE		GPS GLO	DNASS													
Progress	Aliases	JAVTRIUMPH_1M NONE ~	+ ≈	L1 (G01)	L2 (G0	2)												
 Others User 	Manufacture	JAVAD GNSS	_	Azimut\Z	0°, 0,00	5°, 0.07	10° 0.24	_		25°	_		_			55°		65° 7
GIAVTRIUMPH_1M _Clone	Description			0°	0,00	0,07				-0,24								
SERANTENNA 💬 USERANTENNA 1				5°	0,00	0,14	0,35	0,44								-2,07		
SERANTENNA_1			10°	0,00	0,15	0,36	0,46		-0,18									
▲ 🗍 Last used	Radius	88,75	mm	15° 20°	0,00	0,15	0,37	0,47 0.49		-0,16								
SAVTRIUMPH_1M NONE	MPH	54,40	mm	20 25°	0,00	0,16	0,58			-0,13								
	GPS GLON	IASS	° 30°	0,00	0,16	0,39			-0,07									
	Frequency	North, East, Up, mm		35°	0,00	0,16	0,40	0,54	0,42	-0,04	-0,75	-1,48	-1,98	-2,05	-1,69	-1,09	-0,49	-0,0€
	L1 (G01)	1,26 1,45 91,06		40°	0,00	0,16	0,40	0,55		-0,01								
	L2 (G02)	2,64 -1,86 90,98		45° 50°	0,00	0,16	0,41	0,57 0.58	0,46	0,02								
				55°	0,00	0,16		-1	0,51							-1,22		
				60°	0,00	0,16	0,41	0,59	0,52	0,11	-0,58	-1,36	-1,97	-2,19	-1,95	-1,41	-0,82	-0,44
				65°	0,00	0,16				0,13						,		
				70°		0,16				0,15								-1,12
	<		2		0,00	0,15	0,40	0,50	0,00	0,13	-0,34	- 1,55	-2,00	-2,44	-2,43	-2,10	-1,70	>

Figure 198 – Antennas window

The panel is divided into 3 panels. The left panel contains 3 antennas items:

- Other antennas from other manufacturers, grouped by company name
- User antennas added by the user
- Last used antennas used in the program


The central panel contains the name, description and parameters of the antenna selected in the lists and is used to edit the antenna parameters and the table of antenna phase center variations for antennas in the User list:

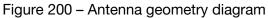

le Antennas																	-		×
🛨 💷 🖥 💥 😫 🕼	()	ä 🛨 d) 🖻 💥																
Search by	\approx	Model	JAVTRIUMPH_1M NONE		GPS GL	ONASS													
JAVGRANT_G3TJ+G NONE	^	Aliases	JAVTRIUMPH_1M NONE ~	F ⊠	L1 (G01)	L2 (G0	2)												
JAVGRANT_G5T NONE JAVGRANT G5T+GP JVGR		Manufacture			Azimut\Z		-		15°										
JAVGRANT_G5T+GP JVGR		Description			No azimut	-1	0,07	0,24	0,33					-2,28					
SAVGRANT_G5T+GP NONE		Description			5°	0.00		0,34						-2,23					
JAVRINGANT_DM JVDM					10°									-2,18					
JAVRINGANT_DM NONE														-2,14					
JAVRINGANT_DM SCIS		Radius	88,75	mm	15° 20°	0,00								-2,09					
JAVRINGANT_DM SCIT		MPH	54,40	mm	20 25°	0,00								-2,09					
JAVRINGANT_GST_JAVC					° 30°	0,00		0,38						-2,03					
JAVRINGANT_G5T NONE		GPS GLON			35°	0.00		0,39						-1,98					
JAVTRIANT NONE		Frequency	North, East, Up, mm		40°	0.00		0,40						-1,96					
─JAVTRIANT_A NONE		L1 (G01)	1,26 1,45 91,06		40 45°	-1		-1	-1										
JAVTRIUMPH_1M NONE		L2 (G02)	2,64 -1,86 90,98			0,00		0,41						-1,95					
JAVTRIUMPH_1MR_NONE					50°	0,00		0,41						-1,95					
JAVTRIUMPH_2A NONE					55°	0,00	0,16	0,41	0,58	0,51	0,09	-0,61	-1,38	-1,95	-2,12	-1,82	-1,22	-0,59	-0,17
JAVTRIUMPH_2A+G JVGR					60°	0,00	0,16	0,41	0,59	0,52	0,11	-0,58	-1,36	-1,97	-2,19	-1,95	-1,41	-0,82	-0,44
JAVTRIUMPH_2A+P JVGR					65°	0,00	0,16	0,41	0,59	0,53	0,13	-0,56	-1,35	-2,00	-2,27	-2,11	-1,63	-1,10	-0,77
JAVTRIUMPH_2A+P JVSD					70°	0,00	0,16	0,40	0,59	0,53	0,15	-0,54	-1,35	-2,03	-2,36	-2,27	-1,87	-1,40	-1,12
JAVTRIUMPH_3A NONE	~				75°	0,00	0,15	0,40	0,58	0,53	0,15	-0,54	-1,35	-2,06	-2,44	-2,43	-2,10	-1,70	-1,45 🗸
	>	<		>	<														>

Figure 199 – Antennas parameters

Radius	antenna radius
MPH	is the vertical distance from the antenna reference point (ARP) to the height measurement mark on the antenna
North, East, Up	offsets of the phase center relative to ARP toward north, east and altitude for the selected navigation system and frequency

To update the antenna database click the button on the toolbar. Click on the toolbar to activate *Diagram antenna parameters* window. It displays a diagram of the main geometric parameters of the antenna:

The right panel contains tables of azimuth and zenith distance of phase center variations for the navigation systems and frequencies. Phase center variations for certified by NGS antennas are published on the NGS website and contain data for GPS and GLONASS for L1 and L2 frequencies:

GPS	GLC	NASS																		
G1 (R0	1)	G2 (R0	02)																	
Азимут	\3	0°,	5°,	10°	15°	20°	25°	30°	35°	40°	45°	50°	55°	60°	65°	70°	75°	80°	85°	90°
Без ази	му	0,00	-0,05	-0,16	-0,19	-0,10	0,13	0,34	0,32	-0,03	-0,66	-1,33	-1,70	-1,53	-0,81	0,15	0,85	0,85	-0,01	-1,43
0°		0,00	0,01	-0,05	-0,06	-0,01	0,10	0,11	-0,13	-0,70	-1,48	-2,20	-2,57	-2,38	-1,69	-0,82	-0,19	-0,16	-0,91	-2,40
5°		0,00	0,00	-0,07	-0,08	-0,03	0,08	0,09	-0,14	-0,70	-1,47	-2,20	-2,55	-2,35	-1,63	-0,73	-0,09	-0,03	-0,69	-2,03
10°		0,00	-0,01	-0,08	-0,11	-0,05	0,07	0,08	-0,15	-0,70	-1,47	-2,18	-2,52	-2,27	-1,51	-0,56	0,12	0,24	-0,36	-1,57
15°		0,00	-0,02	-0,11	-0,13	-0,07	0,04	0,08	-0,14	-0,69	-1,44	-2,14	-2,45	-2,16	-1,34	-0,33	0,43	0,60	0,06	-1,04
20°		0,00	-0,04	-0,13	-0,16	-0,10	0,03	0,08	-0,12	-0,66	-1,41	-2,09	-2,38	-2,03	-1,16	-0,04	0,81	1,04	0,56	-0,47
25°		0,00	-0,05	-0,15	-0,19	-0,13	0,01	0,09	-0,10	-0,62	-1,36	-2,03	-2,29	-1,91	-0,96	0,24	1,20	1,52	1,11	0,13
30°		0,00	-0,06	-0,17	-0,22	-0,16	-0,01	0,08	-0,09	-0,58	-1,32	-1,98	-2,22	-1,81	-0,79	0,50	1,57	2,00	1,65	0,73
35°		0,00	-0,06	-0,20	-0,25	-0,19	-0,03	0,07	-0,08	-0,55	-1,27	-1,93	-2,17	-1,73	-0,67	0,71	1,89	2,42	2,15	1,28
40°		0,00	-0,07	-0,21	-0,28	-0,23	-0,06	0,05	-0,07	-0,54	-1,24	-1,89	-2,13	-1,70	-0,59	0,83	2,10	2,74	2,56	1,76
45°		0,00	-0,09	-0,23	-0,31	-0,26	-0,10	0,03	-0,09	-0,53	-1,22	-1,87	-2,13	-1,70	-0,60	0,87	2,20	2,93	2,84	2,11
50°		0,00	-0,10	-0,26	-0,34	-0,29	-0,14	-0,01	-0,11	-0,54	-1,23	-1,88	-2,14	-1,75	-0,67	0,80	2,18	2,98	2,97	2,33
55°		0,00	-0,11	-0,27	-0,37	-0,32	-0,17	-0,05	-0,15	-0,57	-1,24	-1,90	-2,19	-1,83	-0,81	0,63	2,01	2,86	2,94	2,36
60°		0,00	-0,11	-0,28	-0,40	-0,36	-0,22	-0,10	-0,20	-0,62	-1,28	-1,95	-2,26	-1,95	-1,00	0,38	1,74	2,60	2,72	2,22
65°		0,00	-0,12	-0,30	-0,42	-0,40	-0,26	-0,16	-0,26	-0,68	-1,34	-2,00	-2,34	-2,10	-1,21	0,07	1,36	2,20	2,37	1,92
70°		0,00	-0,12	-0,31	-0,44	-0,43	-0,30	-0,21	-0,32	-0,75	-1,40	-2,06	-2,42	-2,23	-1,45	-0,27	0,94	1,74	1,89	1,47
75°		0,00	-0,13	-0,31	-0,44	-0,44	-0,34	-0,26	-0,38	-0,81	-1,46	-2,13	-2,51	-2,37	-1,67	-0,60	0,49	1,22	1,35	0,91
80°		0,00	-0,13	-0,33	-0,46	-0,46	-0,36	-0,30	-0,44	-0,87	-1,52	-2,19	-2,57	-2,48	-1,86	-0,90	0,09	0,72	0,80	0,30
85°		0,00	-0,14	-0,33	-0,46	-0,46	-0,37	-0,33	-0,48	-0,92	-1,57	-2,22	-2,62	-2,55	-2,00	-1,13	-0,25	0,29	0,28	-0,29
90°		0,00	-0,15	-0,33	-0,46	-0,45	-0,37	-0,33	-0,49	-0,93	-1,58	-2,23	-2,63	-2,58	-2,07	-1,26	-0,48	-0,02	-0,11	-0,79
95°		0,00	-0,15	-0,33	-0,44	-0,43	-0,35	-0,31	-0,48	-0,92	-1,57	-2,21	-2,60	-2,55	-2,05	-1,30	-0,56	-0,18	-0,35	-1,14
4000		0.00		0.00	0.40	A 14	0.04	0.07		0.00	4 50	0.45	0.50	- + F	4 65	4 0.0	0.54	0.47	A 10	4 0.0

Figure 201 – Phase Center Variation Table

Standard antennas manufactured by third party companies cannot be edited or deleted. Clone and export operations are available for them:

惽	Clone	Shift+Ctrl+C
89	Export	Ctrl+E

Clone	an antenna titled with a _Clone addition. It is added to the User list
Export	opens window to export antenna to an ANTEX file:

Export antenna						Х
← → • ↑	> This PC > New disk (D:) > 1		ٽ ~			
Organize 🔻 Ne	w folder				•== -	?
🖈 Quick access	▲ Name	Date modified	Туре	Size		
	*	No items match your sea	rch.			
🕂 Downloads	*					
🔮 Documents	*					
Pictures	*					
less oneDrive						
Vander Nick	*					
File <u>n</u> ame:						\sim
Save as <u>t</u> ype:	ANTEX files (*.atx, *.txt)					~
∧ Hide Folders				<u>S</u> ave	Cancel	

Figure 203 – Export antenna window

For antennas created by the user, the following operations are available:

USERANTENNA			
0	Ð	Add	Ctrl+N
	٥Ľ)	Rename	F2
	惽	Clone	Shift+Ctrl+C
	∺	Delete	Del
	22	Import	Ctrl+I
	89	Export	Ctrl+E

Figure 204 – User antennas menu

Add	add an antenna named USERANTENNA to the User list with the addition to the name _1, if the name USERANTENNA is already in use
Rename	edit the name of the antenna
Clone	clone the antenna name
Delete	remove an antenna from the list
Import	import parameters for the selected antenna from an ANTEX file
Export	export antenna parameters to ANTEX file

For antennas in the Last used list, operations are available for cloning, deleting and exporting to an ANTEX file:

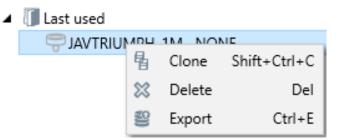


Figure 205 – Last used antennas menu

The ribbon of the left panel contains the following icons:

Figure 206 – Ribbon of icons of the left panel

+	adding an antenna named USERANTENNA to the User list
	editing antenna name
ł	clone antenna
\otimes	delete antenna
	import of antenna parameters into ANTEX file
\$	export of antenna parameters to ANTEX file

For the antennas of *Other* list only the cloning and export icons are active, for the *User* list – all icons, for the *Last used* list - the icons for cloning, deleting and exporting. The central and the right panels for the *Other* and *Last used*, are for informational purposes and are available for viewing only. For antennas selected in the *User* list, the ribbon of icons of the central panel become active. The parameters and variations of the phase center of the selected antenna become available for editing:

Figure 207 – Ribbon of icons of the central panel

ä	save changes in parameters
+	add a table of phase center variations for a specific navigation system and for a specific signal type
Ø	copy the phase center variation table. The copied table is copied to an Excel or Notepad ++ file, where the values can be edited, then the edited data is copied to PGO
	paste the phase center variation table copied into Excel or Notepad ++
≫	delete the phase center variation table for a specific navigation system and for a specific signal type. To edit the values of parameters or variations, you need to double-click on the edited value, and then edit it.

CHAPTER 12. AERIAL CAMERA EDITOR

To calculate the coordinates of camera exposure moments (events), it is necessary to set the initial parameters, such as shifts of the center of the film plane of the aerial camera relative to the phase center of the satellite receiver antenna, installed on the aircraft, and the camera parameters. The aerial cameras editor window can be activated by selecting the *Program* item of the main menu and then the *Cameras* item:

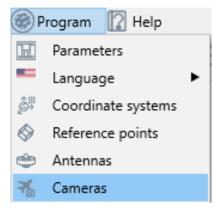


Figure 208 – Cameras

Cameras and airplanes manager	- 0	×
Ga 76 29 29		
Cameras	Edit Project	
i New Camera I New Camera 1	Name	
🙆 New Camera 2	Offsets	
 Airplanes 	Forw/Back 0,0000	m
₩ New Airplane ₩ New Airplane 1	Left/Right 0,0000	m
X New Airplane 2	Vertical 0,0000	m
	Comment	
	Save Cancel	
ОК	Cancel	

Figure 209 - Cameras and airplane manager

Left panel

The panel of the window has lists of airplanes and cameras, defined in the program. The icon ribbon implements the following functions:

A	create an object New Camera
*	create an object New Airplane
ŶIJ	create BackUp File
S	restore BackUp File

It is possible to edit names of the aircraft and the camera by double-clicking on the name of the camera or the aircraft.

Right-clicking on any element on the left side of the window opens a menu with the following functions:

G	New Camera	Ctrl+N	*	New Airplan	e Ctrl+N
*	Properties	Ctrl+Enter	*	Properties	Ctrl+Enter
<u>abj</u> i	Rename	F2	<u>erj</u> i	Rename	F2
×	Cut	Ctrl+X	≻	Cut	Ctrl+X
Ø	Сору	Ctrl+C	Ø	Сору	Ctrl+C
ħ	Paste	Ctrl+V	齨	Paste	Ctrl+V
≈	Delete	Del	∺≋	Delete	Del
50	Import	Ctrl+l	89	Import	Ctrl+I
89	Export	Ctrl+E	8	Export	Ctrl+E

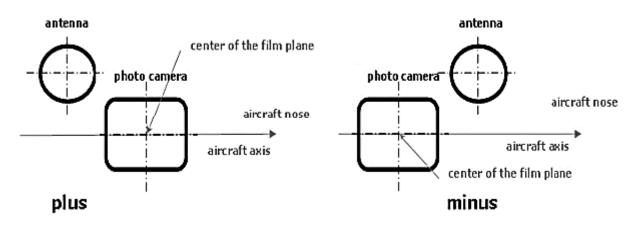
Figure 210 – Program menu

New Camera (Airplane)	create an object New Camera (New Airplane)
Propertie	opens windows for entering camera parameters and setting up the receiver:

🙆 New Camera	🛪 New Airplane →			
Name New Camera		Name	New Airplane	
Camera		Offsets		
Delay interval 0,000	ms	Forw/Back	0,0000	m
Focal distance 0,000 m	nm	Left/Right	0,0000	m
Distance to film 0,000 m	nm	Vertical	0,0000	m
Gyro platform mounted		Comment		
Comment				
L				

Figure 211 – Shifts and camera parameters

Rename	rename an object
Cut	cut out an object
Сору	copy an object
Paste	paste copied or cut
Delete	delete an object
Import	import of sets of shifts and camera parameters from *. PAC files
Export	export of sets of shifts and camera parameters to *. PAC files


Parameters related to the aerial camera and the aircraft are automatically recognized when importing from *PAC* files.

Right panel

The *Edit* tab of the right panel contains information about the shifts and camera parameters selected in the left panel and is used to exchange information between the project and the program. The main functions are implemented in a menu that opens when you right-click on an object and are similar to those described above

12.1 Receiver installation parameters

Parameter *Forw/Back* allows to set the offset, which is measured along the aircraft axis from the antenna phase center to the center of the film plane with the corresponding sign:

Parameter *Left/Right* allows to set the offset, which is measured across the aircraft axis from the phase center of the antenna to the center of the film plane with the corresponding sign:

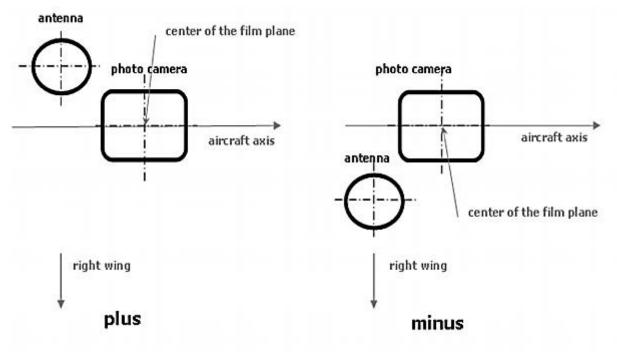


Figure 213 – Left/Right offset

Parameter *Vertical* allows to set distance from the ARP antenna to the film plane, which is measured along the vertical axis.

12.2 Camers parameters

The *Delay interval* (milliseconds) allows to set delay between the moment of camera exposure and the event time measured by the receiver.

Focal length (millimeters) allows to set the focal length of the camera.

Distance to the film (millimeters) allows to set the distance to the film plane, which is measured from the center of rotation of the camera to the film plane. The distance will be positive if the center of rotation of the camera is below the plane of the film.

If *Gyro platform mounted* is checked, the camera was used with a gyro platform, and the camera orientation angles should be used when calculating the coordinates of the events. Otherwise,

aircraft orientation angles should be specified manually in the table *Markers*. To do this, select *View* and *Markers* in the main menu, select the columns in the table that opens, right-click and edit the values of the *Yaw*, *Pitch* and *Roll* parameters.

The *Project* item shows lists of airplanes and cameras in the project database:

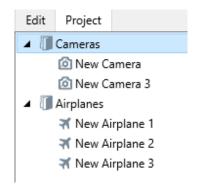


Figure 214– Project tab

To copy from program database to the project database or vice versa, select the element to be

copied and click the button \triangleleft or \triangleleft .

CHAPTER 13. COORDINATE CALCULATOR

The tool is available through main menu Tools item:

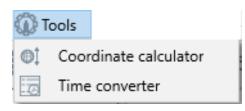


Figure 215 – Coordinate calculator item

or by	clicking	button on a toolbar:						
	🎯 Coordina	te calculator				_		\times
		Source			Target			
	BLH			Grid				
	Latitude	N 0° 00' 00,00000"]	North	116,8692			m
	Longitude	E 0° 00' 00,00000"		East	2775147,7970] m
	Height	0,0000 n	" _~	Height	-130,1648			m
	EPOCH	0,0000		EPOCH	2010,0000			
	💮 WGS8	4 v 🕂 Q		SK-	42 / Gauss-Kruger zone 7 -	36-4; ~	+	Q
		4	Convert coor	rdinate file				

Figure 216 – Coordinate calculator window

The calculator window consists of two panels, where it is possible to select a source and target coordinate systems (in the future CS) from a list. In order for the CS to be in this list, copy the CS

from the *Favorites* folder using the button 🕒:

Select	x
🔺 🚛 Far	vorites
⊿ []	Default
	G) WGS84
	Ĵ→ WGS84(ECEF)
	World Mercator
	GS-63 St. Petersburg Region / Z4 10/3/2024 1:27:49 PM
	MKEA
	MNBD
	NCNA
	NEST
	P277
	SCSR
	SK-42 / Gauss-Kruger zone 15 - 84-90° E 10/3/2024 1:26:39 PM
	SK-42 / Gauss-Kruger zone 7 - 36-42° E
	SK-42 / MSK-02 zn. 2 Resp. Bashkortostan 10/3/2024 1:29:16 PM
1	SK-42 / MSK-05 zn. 1 Resp. Dagestan
	TXVR
	WGS84(ITRF2014)
🕨 🚺 Pro	oject
	Ok Cancel

Figure 217 – Favorites folder

The CS selected in this window after pressing the OK button is included to the list of CS of the calculator.

The coordinate system is copied to the Favorites folder from the program database using the Coordinate System Editor. Any number of CS may be copied to this folder.

Coordinates are recalculated by pressing arrows and in the direction indicated by the arrows. Both panels are equivalent and the panel selection for entering the initial coordinates does not matter.

The choice of the source and the resulting CS in both panels is carried out in the drop-down list of the CS of the calculator:

67	ED50 ~
67	ED50
	SK-42 / MSK-02 zn. 2 Resp. Basł
67	Adindan
	MSK-05 / Republic of Dagestan
67	WGS84
Į÷,	WGS84(ECEF)
	SK-42 / Gauss-Kruger zone 7 - 🤅

Figure 218 – Choice of CS

By clicking the button activates the window with the parameters selected CS:

🛞 SK-42 / Gauss-Kruger zone 7 - 36-42° E	– 🗆 X
Helmert Transformation (7-param. linear)	Transverse Mercator
X-axis translation	Latitude of Origin
23,570	n N 0° 00' 00,00000"
Y-axis translation	Central Meridian
140.050	m E 38° 59' 60,00000"
Z-axis translation	Scale Factor
-79,800	n 1,000000
X-axis rotation	False Easting
0° 00' 00,00000"	7500000,000 m
Y-axis rotation	Flattening
-0° 00' 00,35000"	298,30000000
Z-axis rotation	Prime meridian
-0° 00' 00,79000"	E 0° 00' 00,00000"
Scale difference	False Northing
-0,220 ppr	0.000
Semi-major axis (source)	Semi-major axis
6370345.000	m 6378245,000 m
Semi-major axis (target)	,
6270127.000	n 💮 — 🎹 Forward
Flattening (source)	
298,30000000	
Flattening (target)	
298,257223563	
Prime meridian (source)	
E 0° 00' 00,00000"	
Prime meridian (target)	
E 0° 00' 00,00000"	
253 🔶 253 Backward	

Figure 219 – CS parameters

The color of the arrow and the label show the direction of conversion, for which the parameters are given.

For the batch recalculation of coordinates, click the button	Convert coo		select the
file containing the coordinates in the window	rce coordinate file	select the f	file. where
recalculated coordinates will be placed in the window and th			,

Define templates

It is necessary to specify templates of formats for input and output of coordinates:

Select import template X							
Template	Columns		Empty	Northing	Easting	Height	
1	Column	Value	МНСВ	-2664063,74	-4323171,986	3848361,519	-26640
3	0	Empty	P222	-2689640,155	-4290437,452	3865050,855	-26896
4	1	Northing	SLAC	-2703115,933	-4291767,215	3854247,872	-27031
	2	Easting	ZOA1	-2684436,493	-4293337,322	3865351,523	-26844
	3	Height	S300	-2645887,228	-4307855,756	3876512,189	-26458
			P254	-2645677,671	-4322568,538	3861306,138	-26456
			P259	-2619348,155	-4342043,826	3855666,111	-26193
			P217	-2672525,596	-4335539,1	3826692,095	-26725
🗄 Add 🛛 🐹 Delete	Œ	Add 🔄 Insert 🗱 Delete	P242	-2663555,5	-4352803,559	3813317,713	-26635
Separator Space Tab Decimal Separator .							
Combine lines 1 🗸 🗌 Igr							
Encoding UTF8 V	<				>		
		OK	Cancel				

Figure 220 – Coordinate input template